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Chapter 1

Building blocks of statistical
inference; Revision and
introduction

1.1 Random variables
A random variable is a variable whose value is numerical outcome of
a random phenomenon

• Phenomenon is called random if individual outcomes are uncertain but
there is nonetheless a regular distribution of outcomes in large number of
repetitions.

• The probability of random phenomenon is the proportion of times the
outcome would occur in a very long series

Example 1. When you toss a coin, there are only two possible outcomes,
heads or tails. Figure 4.1 shows the result of tossing a coin 5000 times twice.
For each number of tosses from 1 to 5000, we have plotted the proportion of
those tosses that gave a head. Trial A (red line) begins tail, head, tail, tail. The
proportion of heads for Trial A starts at 0 on the first toss, rises to 0.5 when
the second toss gives a head, then falls to 0.33 and 0.25 as we get more tails.
Trial B (green) starts with five straigth heads, so the proportion of heads is 1
until the sixth toss.

41.pdf

The proportion of tosses that produces heads is quite variable at first. Trial
A starts low and Trial B starts high. As we make more and more tosses, how-
ever, the proportion of heads for both trials gets close to 0.5 and stays there.
If we made yet a third trial at tossing the coin a great number of times, the
proportion of heads would again settle down to 0.5 in the long run. We say 0.5
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is the probability of a head. The probability 0.5 appears as as horizontal line on
the graph.

Some events are random "by definition": The outcome of a coin toss, the
time between emissions of particles by a radioactive source, and sexes of the
next litter of lab rats are all random. Probability theory describes random
behavior. Probability can never be observed exactly. Mathematical probability
is an idealization based on imagining what would happen in an indefinitely
long series of trials. When examining randomness there are four mandatory
restrictions:

• You must have a long series of independent trials, i.e. the outcome of one
trial must not influence the outcome of any other.

• The idea of probability is empirical. We can estimate a real-world proba-
bility only by actually observing many trials.

• The proportion of an outcome often requires several hundred trials to
settle down to the probability of that outcome. Psychical random devices
are often too slow for this. Short runs give only rough estimates of a
probability.

• All the observations must be drawn from the same parent population, i.e.
from the same family of random variabless.

Random variables are denoted by capital letters near the end of the alphabet,
such as X and Y . The random variables of greatest interest are outcomes such
as the mean x of a random sample. When a random variable X describes a
random phenomenon, the sample space S just lists the possible values of the
random variable.

1.2 Probability
The French naturalist Count Buffon (1707-1788) tossed a coin 4040 times. Re-
sult: 2048 heads, or proportion 2048/4040=0.5069 for heads.

Around 1900, the English statistician Karl Pearson heroically tossed a coin
24000 times. Result: 12.012 heads, a proportion of 0.5005.

While imprisoned by the Germans during WWII, the South African statis-
tician John Kerrich tossed a coin 10000 times. Result: 5067 heads, proportion
of 0.5067.

The sample space S of a random phenomenon is the set of all pos-
sible outcomes.

Example 2. Toss a coin. There are only two possible outcomes, and the
sample space is

S=[head, tails]

or more briefly, S = [H,T ]

Example 3. Let your pencil fall blindly into table of random digits and
record the value of the digit as it lands on. The possible outcomes are
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S = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

An event is an outcome or a set of outcomes of a random phe-
nomenon, i.e. event is a subset of the sample space.

Example 4. Take the sample space of S for four tosses of a coin to be the
16 possible outcomes in the from HTHH. Then "exactly 2 heads" is an event.
Call this event A. The event A expressed as a set of outcomes is

A = [HHTT,HTHT,HTTH, THHT, THTH, TTHH]

discreter.pdf

A continuous random variable X takes all values in an interval of
numbers. The probability distribution of X is described by a density curve.
The probability of any event is the area under the density curve and above the
values of X that make up the event.

410.pdf

The cumulative distribution function Fx of any real valued random variable
x is a function:

Fx(t) = P (x ≤ t), t ∈ R1.

Every cumulative distribution function has three characteristics:

• Fx is growing

• Fx is continuous to the right

• Fx(−∞) = 0 and Fx(∞) = 1.

When cumulative distribution function is known, the probabilities of all pos-
sible intervals P (a < x < b) can be calculated. With the help of these, the
probabilities of all events x ∈ A can be calculated, if A can be formed using
theoretical elementary processes within some interval. (see Moore & McCabe,
p. 290-298). All continuous probability distributions assing probability 0 to
every individual outcome. Only intervals have positive probability.

A Density curve is a curve that:

• is always on or above the horizontal axis and

• has area exactly 1 underneath it.
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A density curve describes the overall pattern of a distribution.

Example 6. In a histogram, the areas of the bars represent either counts or
proportions of the observations. The area of the shaded bars in figure 1.23(a)
represent the students with vocabulary scores 6.0 or lower. There are 287 stu-
dents, who make up the proportion 287/947=0.303 of all seventh graders in a
school in question.

123a.pdf

In figure 12.3(b) the area under the smooth curve to the left of 6.0 is shaded.
Adjust the scale so that the total area under the curve is exactly 1. Areas under
the curve then represent proportions of the observations. That is, area=relative
frequency. The curve is then a density curve.

123b.pdf

When exploring data, one should always:

• Plot the data, i.e. make a graph, usually a stemplot or a histrogram.

• Look for overall pattern and for striking deviations such as outliers

• Calculate an appropiate numerical summary to briefly describe center and
spread.

Density curves presented above were symmetric, unimodal and bell-shaped.
They are called normal curves and they describe normal distributions. All
normal distributions have the same overall shape. The height of the density
curve at any point x is given by

1
σ
√

2Π
e−

1
2

(
x−µ
σ

)2
The equation of the curve is completely determined by the mean µ and the
standard deviation σ.

Because any density curve describes an assignment of probabilities, normal
distributions are probability distributions. N(µ, σ) describes a normal distribu-
tion with mean µ and standard deviation σ. If a random variable X has the
N(µ, σ) distribution, then the standardized variable

Z = X−µ
σ

is a standard normal random variable having the distribution N(0, 1).
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1.3 Sampling distributions and basics of asymp-
totic distribution theory

The mean of a probability distribution describes the long-run average outcome.
This can’t be called mean x̄. The common symbol for the mean of a proba-
bility distribution is µ, the Greek letter mu.

Select an simple random sample (SRS) of size n from a population, and
measure a variable X on each individual in the sample. The data consist of
observations on n random variables x1, x2, ..., xn. A single xi is a measurement
on one individual selected at random from the population and therefore has the
distribution of the population. The sample mean of an SRS of size n is

x̄ = 1
n (x1 + x2 + ...+ xn).

If the population has mean µ, then µ is the mean of each observation xi. There-
fore, by the addition rule for means of random variables (see Moore & McCabe
p. 326):

µx̄ = 1
n (µx1

+ µx2
+ ...+ µxn) = 1

n (µ+ µ+ ...+ µ)

That is, the mean x̄ is the same as the mean of the population. Thus, the sample
mean x̄ is an unbiased estimator of the unknown population mean µ.

Bias concerns the center of the sampling distribution. A statistic used to
estimate a parameter is unbiased if the mean of its sampling distribution is
equal to the true value of the parameter being estimated.

Law of large numbers. Draw independent observations at random from
any population with finite mean µ. Decide how accurately you would like to
estimate µ. As the number of observations drawn increases, the mean x̄ of the
observed values eventually approaches the mean µ of the population as closely
as you specified and then stays that close.

More formally: Lets assume that x1, x2, ..., xn, ... is a line of independent,
identically distributed random variables (xn ∼ i.i.d.) with limited second mo-
ments (=variances). Let µ = EXn and σ2 = var(xn). Then

x̄n = 1
n

∑n
i=1 xi

p−→ µ ,

when n −→∞.

414.pdf

Example 7. The distribution of the heights af all young women is close
to the normal distribution with mean 64.5 inches and standard deviation of 2.5
inches. Suppose µ = 64.5 were exactly true. Figure 4.14 shows the behavior
of the mean height x̄ on n women chosen at random from a population whose
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heights follow N(64.5, 2.5) distribution. The graph plots the values of x̄ as we
add women to our sample. The first woman drawn had height 64.21 inches. The
second had height 64.35 inches, so for n = 2 the mean is

x̄ = 64.21+64.35
2 = 64.28

This is the second point on the line in the graph. Eventually, the mean of the
observations gets close to the population mean µ = 64.5 and settles down at
that value.

Mean and standard deviation of a sample mean. Let x̄ be the mean
of an SRS of size n from population having mean µ and standard deviation σ.
The mean and standard deviation of x̄ are

µx̄ = µ
σx̄ = σ√

n

If the population has the N(µ, σ) distribution, then the sample mean x̄ on n
independent observations has the N(µ, σ√

n
) distribution.

Central Limit theorem. Draw an SRS of a size n from any population
with mean µ and finite standard deviation σ. When n is large, the sampling
distribution of the sample mean x̄ is approximately normal:

x̄ is approximately N
(
µ, σ√

n

)
.

More formally: If xn ∼ i.i.d., Exn ≡ µ and var(xn) = E(xn−µ)2 ≡ σ2 <∞,
then

yn =
√
n x̄n−µσ .

Example 8. Figure 5.10 shows the central limit theorem in action for a
very nonnormal population. Figure 5.10 displays the density curve of a single
observation of the population. The distribution is strongly rigth-skewed, and
the most probable outcomes are near 0. The mean µ of this distribution is 1,
and its standard deviation σ is also 1. This particular continuous distribution
is called an exponential distribution.

510.pdf

In figure 5.10 the distribution of sample means from a strongly nonnormal
population becomes more normal as the sample size increases. In (a) is a distri-
bution of one observation. In (b) the distribution of average of two observations.
In (c) the distribution of average for 10 observation, and in (d) the distribution
of average for 25 observations.
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1.4 Inference for distributions
A parameter is a number that decribes the population. A parameter is a
fixed number, but in practice we do not know its value.

A statistic is a number that describes a sample. The value of a statistic is
known when we have taken a sample, but it can change from sample to sample.
We often use a statistic to estimate an unknown parameter.

Example 9. Sample surveys show that fewer people enjoy shopping in the
past. A survey by the market research firm Yankelovich Clancy Shulman asked
a nationwide random sample of 2500 adults if they agreed or disagreed that "I
like buying new clothes, but shopping is often frustrating and timeconsuming."
1640, or 66% of the respondents said that they agreed. The proportion of the
sample who agree is

p = 1650
2500 = 66%

The number p=0.66 is a statistic. The corresponding parameter is the propor-
tion (called p̂) of all adult U.S. residents who would have said "Agree" if asked
the same question. We don’t know the value of the parameter p, so we use the
statistic p̂ to estimate it.

Confidence interval. A 95% confidence interval for a parameter is an in-
terval computed from sample data by a method that has 95% probability of
producing an interval containing the true value of the parameter.

Lets, for example, assume that we know that the entire population of SAT
scores in the United States has a mean µ and standard deviation σ, then in
repeated samples of size 400 the sample mean x̄ has a N(µ, σ/500) distribu-
tion. Let say that we know that the standard deviation σ of SATM (score for
mathematical reasoning ability) scores in California population is σ=100. In
repeated sampling the sample mean x̄ follows the normal distribution centered
at the unknown population mean µ and having standard deviation

σx̄ = 100√
500

.
= 4.5

In this case the probability is about 0.95 that x̄ will be within 9 points (two
standard deviations of x̄ of the population mean score µ. The population mean
is 461. We cannot know whether our sample is one of the 95% for which the
interval x̄ ± 9 catches µ or one of the unlucky 5%. The statement that we are
95% confident that the unknown µ lies between 452 and 470 is shorthand for
saying, "We arrived at these numbers by a method that gives correct results
95% of the time".

Most confidence intervals have the form

estimate±margin of error

The margin of error shows how accurate we believe our guess is, based on the
variability of the estimate. Confidence interval for sample mean x̄ is calculated
using
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µ± z ∗ σ√
n

In other words, there is some probability C that above interval contains µ.

64.pdf

Example 10. Tim Kelley has been weighting himself once a week for several
years. Last month his four measurements (in pounds) were

190.5 189.0 195.5 187.0

Give a 90% confidence interval for his mean weight for last month.
We treat the four measurements as an SRS of all possible measurements

that Tim could have taken last month. These are estimates of µ, his true mean
weigth for last month.

Examination of Tim’s past data reveals that over relatively short periods
of time, his weight measurements are approximately normal with a standard
deviation of about 3. For our confidence interval we will use this value as the
true standard deviation, that is, σ=3.

the mean of Tim’s weight readings is

x̄ = 190.5+189.0+195.5+187.0
4 = 190.5

For 90% confidence, the formula becomes

x̄± z ∗ σ√
n

= 190.5± 1.645 3√
4

= [188.0, 193.0]

Standard error. When the standard deviation of a statistic is estimated
from the data, the result is called the standard error of the statistic. The
standard error of the sample mean is

SEx̄ = s√
n
,

where s is a sample standard deviation. This is also sometimes called as "esti-
mated standard error" of sample mean.

The standardized sample mean

z = x̄−µ
σ/
√
n

is the basis of the z procedures for inference about µ when σ is known. This
statistic has the standard normal distribution N(0, 1). If standard deviation is
substituted with standard error, or estimated standard error, the statistic does
not have a normal distribution.

71.pdf

The t distribution. If a SRS of size n is drawn from an N(µ, σ) population,
then the one-sample t statistic
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t = x̄−µ
s/
√
n

has the t distribution with n− 1 degrees of freedom.

1.5 On the robustness of statistical analysis

1.5.1 Classical inference theory and robust procedures
Classical statistical inference theory presupposes a parent population (a
family of random variables), whose every member contains those qualitative
characteristics that the process that produced those observations is considered
to have. Within this population, one can retrieve (estimate) a member that, ac-
cording to some criterion, would have the best fit with the observations. Parent
population should be as broad as possible, i.e. there shouldn’t be any uninten-
tional constraints.

A response variable measures an outcome of a study. An explanatory
variable explains or causes changes in the response variable.

Example 10. How does drinking beer affect the level of alcohol in our
blood? The legal limit for driving in most states in U.S. is 0.08%. Student col-
unteers at Ohio State University drank different numbers of cans of beer. Thirty
minutes later, a police officer measured their blood alcohol content. Number of
beers consumed is the explanatory (independent) variable and and percent of
alcohol in the blood is the response (dependent) variable.

Robust procedures. A statistical inference procedure is called robust if
the probability calculations required are insentive to violations of the assump-
tions made.

Example 11. Lets assume that a researcher has a one dataset on the in-
come distribution of Finland and one dataset on the income distribution of Swe-
den. Both datasets include monthly observations on the incomes of households
within 10 years. The Swedish dataset measures the net income of households
(after taxes) and the Finnish dataset measures the net expenditures of house-
holds. Now, researcher would like to test if Sweden had the most equal income
distribution within the measured era. However, it is not possible to robustly
test this hypothesis, because the data on Sweden and Finland is from different
sources. There is no one coherent parent population of random variables, and
this would thus violate the assumption that random variables are drawn from a
one family of random variables.

Theory is as important in statistical analysis as is the consistent use of sta-
tistical methods. If researcher does not have a theory to back his/her findings,
obtained results might be spurious.

Example 12. Probably the most used example is the correlation between
consumption of ice cream and weather temperature. It is highly likely that
temperature affects on the consumption of ice cream, because it is likely that
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ice cream consumption increases when temperature increases (at least to a some
point). However, if researcher would have no theory he might come up with
an "insane" result: Ice cream consumption raises temperature, or ice cream
consumption affects on the heat of the sun, etc. Although this is an extreme
example it highlights the fact that for robust statistical analysis, one should
have some reasonable theory that is tested with statiscal analysis.

1.5.2 Power of a test and error types in hypothesis testing
In examining the usefulness of a confidence interval, we are concerned with
both the level of confidence and the margin of error. The confidence level tells
us how reliable the method is in repeated use. The margin of error tells us how
sensitive the method is, i.e. how closely the interval pins down the parameter
being estimated. The significance level, α, says how reliable the method is in
repeated use. If we use 5% signifigance tests repeatedly when H0 is true, we
will be wrong (the test will reject H0) 5% of the time, and right (the test will
fail to reject H0) 95% of the time.

The probability, computed assuming that H0 is true, that the test statistic
would take a value as extreme or more extreme than that actually observed is
called the p-value of the test. The smaller the p-value, the stronger the evidence
against H0 provided by the data.

The probability that a fixed level α significance test will reject H0 when a
particular alternative value of the parameter is true is called the power of the
test to detect that alternative.

Testing for hypothesis (H0 vs. H1 or Ha) is conducted with the help of
probability theory. Because of this there is always a possibility of error. There
are two types of errors:

• We reject Ho when it is true (Type I error).

• We accept H0 when is is not true (Type II error).

The probability of a Type I error is the probability of rejecting Ho when it is
really true. The probability of a Type II error is the probability of accepting a
false null hypothesis.

The significance level α of any fixed level test is the probability of a Type I
error. That is, α is the probability that the test will reject the null hypothesis
H0 when H0 is in fact true.

The power of a fixed level test against a particular alternative is 1 minus the
probability of a Type II error for that alternative.

If the probability of Type I error is denoted by α and the probability of Type
II error is denoted by β the possible outcomes of testing for H0 are:
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unknown true situation
Result H0 true H0 false

Accept H0 Correct decision Type II error
1− α β

Reject H0 Type I error Correct decision
α 1− β

The distinction between tests of significance and tests as rules for deciding
between two hypotheses lies in the reasoning that motivates the calculations. In
a test of significance we focus on a single hypothesis (H0) and a single probability
(the p-value). We are thus measuring the strength of the sample evidence against
H0. Calculations of power are done to check the sensitivity of the test. If H0

cannot be rejected, we can conclude only that there is not sufficient evidence
against H0, not that H0 is actually true. In terms of inference, we focus on
two hypotheses and give a rule for deciding between them based on the sample
evidence.
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Chapter 2

Analysis of variance

2.1 One-way analysis of variance
Which of the four advertising offers mailed to sample household produces the
highest sales in dollars? Which of ten brands of automobile tires wears longest?
How long do cancer patiens live under each of three thrapies for their cancer?
In each of these settings we wish to compare several treatments. In each case
the data are subject to sampling variability - if we mailed the advertising of-
fers to another set of households, we would get different data. The question
for inference is therefore posed in terms of the mean response. The statistical
methodology for comparing several means is called analysis of variance, or
ANOVA.

Two ANOVA techiques will be considered: One-way ANOVA and two-way
ANOVA. One-way ANOVA is used when there is only one way to classify the
populations of interest. However, often there are several ways to compare real
life situations (or, in that mater, some simulations), which require two-way
ANOVA.

Example 13. A gerontologist investigating various aspects of the aging
process wanted to see whether staying "lean and mean", that is, being under
normal body weight would lenghten life span. She randomly assigned newborn
rats from a highly inbred line to one of three diets: (1) unlimited access to
food, (2) 90% of the amount of food that a rat of that size would normally
eat, (3) 80% on the amount of food that a rat of that size would normally eat.
She maintained the rats of three diets troughout their livces and recorded their
lifespans in years. Is there evidence that diet affected life span in this study?
Results are reported on the table below.

Unlimited 90% diet 80% diet
2.5 2.7 3.1
3.1 3.1 2.9
2.3 2.9 3.8
1.9 3.7 3.9
2.4 3.5 4.0
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2.1.1 Comparing means
To assess whether several populations all have the same mean, we compare the
means of samples drawn from each population.

Example 14. A medical researcher wants to compare the effectiveness of
three different treatments to lower the cholesterol of patients with high blood
cholesterol levels. He assigns 60 individuals at random to the three treatments
(20 to each) and records the reduction in cholesterol for each patient.

figure121.pdf

Figure 2.1: Mean serum cholesterol reduction in three groups

figure122(a).pdf

Figure 2.2: Large within-group variation

figure122b.pdf

Figure 2.3: Small within-group variation

The two-sample t statistic compares the means of two populations. If the
two populations are assumed to have equal but unknown standard deviations
and the sample sizes are both equal to n, the t statistic is

t = x̄−ȳ
sp
√

1
n+ 1

n

=

√
n
2 (x̄−ȳ
sp

The square of this t statistic is

t2 =
n
2 (x̄−ȳ)2

s2p

If ANOVA is used to compare two populations, the ANOVA F statistic is exactly
equal to this t2.

The numerator in the t2 statistic measures the variation between the groups
in terms of the difference between their sample means x̄ and ȳ. It includes a
factor for the common sample size n. The denominator measures the varia-
tion within groups by s2

p, the pooled estimator of the common variance. If the
within-group variation is small, the same variation between the groups produces
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a larger statistic and a more significant result.

The ANOVA null hypothesess is that the population means are all equal.
The alternative is that they are not equal. To assess whether several popula-
tions all have the same mean, we compare the variation among the means of
several groups with the variation within groups.

2.1.2 The ANOVA model
In statistical analysis we are usually looking for overall patterns and deviations
from it:

DATA=FIT + RESIDUAL

The observations are now assumed to be drawn randomly from the parent
population. If the observations are x1, x2, ..., xn we can describe this model by
saying that the xj are an SRS from the N(µ, σ) distribution. In the above model
the x’s can also be thought to be varying their population mean:

xj = µ+ εj

The εj ’s (residuals) are then an SRS from the N(0, σ) distribution.

The model for one-way ANOVA is:

xij = µi + εij , i = 1, ..., I and j = 1, ..., ni

The εij are assumed to be from an N(0, σ) distribution. The standard deviation
(σ) is assumed to be the same in all of the populations, but sample sizes ni may
differ.

126.pdf

µi is estimated by using the sample mean for the i:th group:

x̄i = 1
n

∑ni
j=1 xij ,

where, the residuals εij = xij− x̄i reflect the variations about the sample means.

The ANOVA model assumes that the standard deviations are all equal (or
that the variances are equal). If standard deviations are unequal, one can try
transforming the data so that SD:s are approximately equal. Some simple tran-
formations include √xij or logxij . These usually makes both group standard
deviations more nearly equal and also makes the distributions of observations
in each group more nearly normal.

The assumptions in one-way ANOVA model can be summarized as:

1. The dependent variable should be measured in interval scale, and the
independent variable in nominal scale.
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2. The k samples represent independent random samples drawn from k spe-
cific populations with means µ1, ..., µk, where µ1, ..., µk are unknown con-
stants.

3. Each of the k populations is normally distributed.

4. Each of the k populations has the same variance σ2.

Because ANOVA is not extremely sensitive to unequal standard deviations,
for example Moore & McCabe (2004, p. 755) do not recommend a formal test
of equality of standard deviations before using ANOVA. Instead they give the
following thumb rule:

If the largest standard deviation is less than twice the smallest stan-
dard deviation, we can use methods based on the assumption of
equal standard deviations, and our results will still be approximately
correct.

pooleds.pdf

Pooling gives more weigth to groups with larger sample sizes. If the sample
sizes are equal, ssp is just the average of I sample variances.

Testing hypotheses in one-way ANOVA

The null and alternative hypotheses for one-way ANOVA are:

H0 : µ1 = µ2 = ... = µI .

Ha : not all of the µ are equal.

In example 13 we could find the 90% and 80% diets are not different from
each other in their effects on life span, but that they are significantly different
from the control diet. In this case, we would accept the Ha hypotheses.

The ANOVA table

The information from analysis of variance is presented in an ANOVA table.
The colums are labelled as Source, DF, Sum of Squares, Mean Square, F

value, and the Pr > F. The rows are labelled as Model, Error and Corrected
Total. These are the three sources of variation in one-way ANOVA.

The Model row gives information related to the variation among group
means (FIT).

The Error row gives information on the variation within groups (RESID-
UAL). The term "error" is most appropriate when analysing some purely phys-
ical phenomenon, where the observations within a group differ because of a
measurement error. In business and biological sciences the within-group varia-
tion is often due to the fact that not all firms or plants or people are the same.
This variation is not due to errors and is best described as "residual".

The Corrected Total is labelled as "DATA", and so in ANOVA the model
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DATA=FIT+RESIDUAL

becomes

total=model+residual

Each sum of squares is a sum of squared deviations. SST measures variation
of the data around the overall mean, xij − x̄. SSG is the variation of the group
means around the overall mean, x̄i− x̄, and SSE measures the variation of each
observation around its group mean xij − x̄i.

Each sum of squares if associatied with the degrees of freedom. Because
SST measures the variation of all observations (N) around the overall mean,
its degrees of freedom are DFT=N -1. Because SSG measures the variation of
sample means (I), its degrees of freedom are DFG=I-1. SSE is xij − x̄i, and it
compares N observations with I sample means, and therefore DFE=N − I.

In general, it is true that

s2
p = MSE = SSE

DFE

That is, the error mean square is an estimate of the within-group variance, σ2.
In the output this is the Root MSE .

Table 2.1: Calculations in ANOVA
source degr. of freed. sum of squares mean square F

Treats I − 1
∑
ni(

¯xi − ¯)2x SSG/DFG MSG/MSE
Error N − I

∑
(ni − 1)s2

i SSE/DFE
Total N − 1

∑
(xij − x̄)2 SST /DFT

The computational formulas for sum of squares are:

SSTotal =
∑
i

∑
j X

2
ij −

(
∑
i

∑
j Xij)

2

N

SSGroup =
∑
i

[
(
∑
j Xij)

2

ni

]
− (

∑
i

∑
j Xij)

2

N

SSError =
∑
i

[∑
j X

2ij − (
∑
j Xij)

2

ni

]
To obtain mean squares, divide the corresponding sum of squares by its de-
grees of freedom.

• DFT = N − 1

• DFG = I − 1

• DFE = N − I.
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The F test

If H0 is true, there are no differences among the group means. The ratio
MSG/MSE (MSG/MSE in table below) is approximately 1 if H0 is true and
tends to be larger if Ha is true.

Solution to example 13. The hypotheses are

H0 : µU = µ90% = µ80%

Ha :At least one pair of the µi’s are not equal.

Source SS df MS F critical value
Groups 3.15 2 1.575 7.76 3.89
Error 2.44 12 0.203
Total 5.60 14

Since 7.76 > 3.89, the mean squares diets is significantly bigger than the
error mean squares indicating at least one pair of the diets aren’t equal.
Conclusion at this point is only that some of the diets result in different life
spans (i.e. reject H0). To find out where the differences lie we must compare
the means.

2.1.3 Comparing the Means
Contrasts

The ANOVA F test answers to the question: Are the differences among ob-
served group means statistically significant? This just tells us that the group
means are not all the same. Plotting and inspecting means gives us an indica-
tion of where the differences are. In the ideal situation, some specific questions
regarding comparisons among the means are posed before the data is collected.

A contrast expresses an effect in the population as a combination of popula-
tion means. Contrast is estimated by forming corresponding sample contrast
by using sample means in place of population means. Under the ANOVA as-
sumptions, a sample contrast is a linear combination of independent variables
and has, therefore, a normal distribution. Inference is based on t statistics.

Bonferroni’s and Duncan’s tests

The Bonferroni t test statistics is

owaf.pdf

contrasts.pdf
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Bonferroni t =
x̄i.−x̄j.√

MSE
(

1
ni

+ 1
ni

) ,
where i and j represent any two means to be separated and the degrees of
freedom is N − k. Bonferroni t tests are usually run at a smaller α level than
the global F test of the ANOVA table, to manage the probability of type I
error. If all Bonferroni tests are performed at significance level α, then the
overall probability of at least one Type I error (α′) is larger than α and its value
is usually unknown. It can be shown that with three tests at the α level, α′ is
at most 1− (1− α)3. If, for example, α = 0.05 (5%) and three Bonferroni tests
are conducted, the probability of making at least one Type I error becomes at
most 1 − (1 − 0.05)3 = 0.143. Using α = 0.05 for ten comparisons α′ = 0.401.
So the overall probability of Type I error increases rapidly in comparison with
increases in number of means to be separated.

Because of this, most Bonferroni tests are conducted at an α level lower than
the global F test. A general rule is to determine an experimentwise acceptable
upper boundary for the probability of Type I error, say b, and divide this prob-
ability by the actual number of comparisons run, to determine the α level for
each comparisons. If we wished to experimentwise α′ to be 0.05 in example ,
we would use 0.05/3 = 0.017 as the α level for each Bonferroni t test.

A second method used to separate means in fixed treatment ANOVA is
called the Duncan’s multiple range test. This test uses the rank orders of
the sample means to determine the shortetst significant range or SSRp. Any two
means that differ by more than this value are considered significantly different.
Test assumes that all samples have the same size. The test protocol is as follows:

1. Linearly order the k sample means from smallest to largest.

2. Calculate the shortest significant range by

SSRp = rp

√
MSE
n ,

where

• rp is a critical value of the test (from tests own table),
• MSE is the error mean square from the ANOVA table,
• n is the common sample size,
• and v is the degrees of freedom for the MSE.

3. For any subset of p sample means 2 ≤ p ≤ k, compare the appropriate
SSRp. If the range of the means under consideration is greater than
the SSRp, the population means are considered significantly different and
denoted with different superscript letters.

To use the DMRT to separate means based on unequal sample sizes requires an
adjustment (C. P. Kramer 1956):

SSR′p = rp
√
MSE,

where rp is from the table of tests critical values and MSE from the ANOVA
table. The test statistic becomes

|x̄i − x̄j |
√

2ninj
ni+nj

.
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Model II ANOVA

All that has been presented above has been constructed for completely random-
ized design with fixed effects, i.e. the model I ANOVA. In the model I ANOVA
we are interested on treatments "at hand", and the results can be reproduced
with the same treatments. In model II ANOVA, or random-effects ANOVA, we
are only interested on the difference between treatments, and the results usually
change, because the treatments may change between studies.

Example 15. An endocrinologist studying genetic and environmental ef-
fects on insulin production of pancreatic tissue, raised five litters of experimental
mice. At age 2 months he sacrificed the mice, dissected out pancreatic tissue
and treated the tissue specimens with glucose solution. The amount of insulin
released from these specimens was recorded in pg/ml. Are there significant dif-
ferences in insulin release among the litters? Following table gives the amounts
of litter.

1 2 3 4 5
9 2 3 4 8
7 6 5 10 10
5 7 9 9 12
5 11 10 8 13
3 5 6 10 11

Ti. 29 31 33 41 54
x̄i. 5.8 6.2 6.6 8.2 10.8

SST =
∑
i

∑
j x

2
ij −

T 2
..

N = 220.24

SSG =
∑
i
T 2
i

ni
− T 2

..

N = 83.84

SSE = SST − SSG = 136.40

Source of variation SS df MS F c.v.
Among litters 83.84 4 20.96 3.07 2.87
Error 136.40 20 6.82
Total 220.24 24

Since 3.07 > 2.87, we reject H0 and accept Ha. Thus there seems to be a
significant variability among the litters.

There is also a model III type ANOVA, which combines random- and fixed-
effects treatments. However, this method is beyond the scope of this course.

2.1.4 Power of tests in ANOVA
When planning a study using ANOVA, it is important to perform power calcu-
lations to check that the sample sizes are adequate to detect differences among
means that are judged to be important. Power calculations also help evaluate
and interpret the results of studies in which H0 was not rejected.

Procedures for power calculations in ANOVA:
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1. Specify

• an alternative Ha that you consider important; that is, values for the
true population means µ1, ..., µI ;

• sample sizes n1, ..., nI ; usually these will all be equal to the common
value n;

• a level of significance α, which is usually equal to 0.05; and

• a guess at the standard deviation σ.

2. Find the degrees of freedom DFG=I − 1 and DFE=N − I and the critical
value that will lead to rejection of H0. This value, which we denote by
F∗, is the upper α critical value for the F distribution.

3. Calculate the noncentrality parameter

λ =
∑
ni(µi−µ̄)2

σ2 ,

where µ̄ is a weighted average of the group means,

µ̄ =
∑
wiµi

and the weights are proportional to the sample sizes,

wi = ni∑
ni

= ni
N

4. Find the power, that is, the probability that the observed F is greater than
F∗. UnderHa, the F statistic has a distribution known as the noncentral
F distribution.

If the ni are all equal to the common value n then µ̄ is the ordinary average of
the µi and

λ =
n
∑

(µi−µ̄)2

2

If the means are all equal (the ANOVA H0), then λ = 0. The noncentrality
parameter measures how unequal the given set of means is. Large λ points to an
alternative far from H0, and we expect the ANOVA F test to have high power.

2.2 The Two-Way Analysis of Variance
Two-way ANOVA compares the means of populations that are classified in two
ways or the mean responses in two-factor experiments. In the two-way ANOVA
model, there are two factors, each with its own number of levels, comparing to
one-way ANOVA where we had only one categorical variable.

Example 16. In an experiment on the influence of dietary minerals on
blood pressure, rats receive diets prepared with varying amounts of calcium and
varying amounts of magnesium, but with all other ingredients of the diets the
same. Calcium and magnesium are the two factors in this experiment. As is
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common in such experimetns, high, normal, and low values for each of the two
minerals were selected for study. So there are three levels for each of the factors
and a total of nine diets, or treatments. The following table summarizes the
factors and levels for this experiment.

Calcium
Magnesium L M H

L 1 2 3
M 4 5 6
H 7 8 9

For example, Diet 2 contains magnesium at its low level combined with the
normal (medium) level of calcium. Each diet is fed to 9 rats, giving a total of
81 rats used in this experiment. The response variable is the blood pressure of
a rat after some time on the diet.

Example 17. A textile researcher is interested in how four different colors
of dye affect the durability of fabrics. Because the effects of the dyes may be
different for different types of cloth, he applies each dye to five different kinds
of cloth. The two factors in this experiment are dyes with four levels and cloth
types with five levels. Six fabric specimens are dyed for each of the 20 dye-cloth
combinations, and all 120 specimens are tested for durability.

If one or more specific dye-cloth combinations produced expectionally bad
or exceptionally good durability measures, the experiment should discover this
combined effect.

Effect of the dyes that may differ for different types of cloth are represented
in the FIT part of the a two-way model as interactions. In contrast, the
average values for dyes and cloths are represented as main effects. The two-
way model represents FIT for each of the two factors and interaction. One-way
desings that vary a single factor and hold other factors fixed cannot discover
interactions.

2.2.1 The two-way ANOVA model
Advantages of two-way ANOVA:

1. It is more efficient to study factors simultaneously rather than separately.

2. We can reduce the residual variation in a model by including a second
factor thought to influence the response.

3. We can investigate interactions between factors.

When discussing two-way models in general, we will use the labels A and B for
the two factors. In two-way desing every level of A appears in combination with
every level of B, so that I × J groups are compared. The sample size of level i
of factor A and level j of factor B is nij .

The total number of observations is

N =
∑
nij .
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Assumptions for two-way ANOVA:

We have independent SRSs of size nij from each I × J normal populations.
The population means µij may differ, but all populations have the same stan-
dard deviation σ. The µij and σ are unknown parameters.

Let xijk represent the kth observations from the population having factor A
at level i and factor B at level j. The statistical model is

xijk = µij + εijk

for i = 1, ..., I and j = 1, ..., nij , where the deviations εijk are from an N(0, σ)
distribution.

The FIT part of the model is the means µij , and the RESIDUAL part is the de-
viations εijk of the individual observations from their group means. Estimation
of a population mean µij is done by using the sample mean of the observations
in the samples from this group:

x̄ij = 1
nij

∑
k xijk

The k below
∑

means that we sum the nij observations that belong to the
(i, j)th sample.

The RESIDUAL part part of the models contains the unknown σ. σ2 is es-
timated by calculating the sample variances for each SRS and pooling these:

s2
p =

∑
(nij−1)s2ij∑

(nij−1)

Just like in one-way ANOVA, the numerator in this fraction is SSE and the
denominator is DFE (DFE=N − IJ).

2.2.2 The ANOVA table
Source DF SS MS F
A I − 1 SSA SSA/DFA MSA/MSE
B J − 1 SSB SSB/DFB MSB/MSE
AB (I − 1)(J − 1) SSAB SSAB/DFAB MSAB/MSE
Error N-IJ SSE SSE/DFE
Total N − 1 SST SST /DFT

significanceintwo.pdf
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Next we go through two special cases (from many possible model extensions).

2.2.3 Randomized complete block design ANOVA
Example 18. Each of six garter snakes, Thamnophis radix, was observed dur-
ing the presentation of petri dishes containing solutions of different chemical
stimuli. The number of tongue flicks during a 5-minute interval of exposure was
recorded. The three petri dishes were presented to each snake in random order.

Stimulus
Snake Fish mucus worm mucus dH2O
1 13 18 8
2 9 19 12
3 17 12 10
4 10 16 11
5 13 17 12
6 11 14 12

Each of the 18 data points can be looked at two ways. x11 = 13 is part of
column of numbers that represent response to the first stimulus (fish mucus).
That x value is also related to x21 = 18 and x31 = 8 because they are all values
recorded from the same snake. They represent a block of data that is analogous
to a pair of data points in a paired t test. If the snakes are randomly chosen from
a larger group of garter snakes, we are not interested in differentiating among
the snakes according to their response and have "blocked" the design only to re-
move some of the variability among snakes in their response to olfactory stimuli.

The null hypothesis would be H0 : µfm = µwm = µdH2O with the alternative
hypothesis Ha: At least on pair of µi’s not equal.

Randomized means that each treatment is assigned randomly within blocks
and complete implies that each treatment is used exactly once within each
block.

The randomized complete block model

Model assumptions:

1. Each observation constitutes a random, independent sample from a pop-
ulation with mean µij . There are k × b of these populations sampled.

2. Each of the k × b populations is normally distributed with the same vari-
ance.

3. The treatment and block effects are additive, i.e. there is no interaction
between blocks and treatments.

The model is:

xij = µ+ τi + βj + εij ,

where

25



• µ is the overall mean, τ is the effect due to the fact that the experimental
unit received the i:th treatment

τi = µi. − µ,

• βj is the effect due to the fact that the experimental unit was in the j:th
block

βj = µ.j − µ,

• εij is the residual

εij = xij + µij ,

where ij is the mean for the combination of the ith treatment and the jth block.

Sum of Squares identity

SSTotal =
∑
i

∑
j(xij − x̄)2

with df=v = bk − 1. The computational formula is:

SSTotal =
∑
j

∑
j x

2
ij −

T 2
..

N

The computational formula for sum of squares of treatmes:

SStreat =
∑
i

∑
j(x̄i. − x̄..)2 =

∑
i
T 2
i.

b −
T 2
..

N ,

with df=k − 1.

The computational formula for the sum of squares of blocks:

SSblocks =
∑
i

∑
j(

¯x.j − ¯ )2x.. =
∑
j

T 2
.j

k −
T 2
..

N

with df=b− 1.

For the errors the sum of squares is

SSError =
∑
i

∑
j(xij − x̄i. − x̄.j + x̄..)

2 = SSTotal − (SSTreat + SSBlock)

with df=(k − 1)(b− 1).

The ANOVA table

The sum of squares divided by the appropriate degrees of freedom generate
mean squares than can be used to test hypotheses about means:

MStreat = SSTreat
k−1

MSBlocks = SSBlocks
b−1

MSE = SSError
(k−1)(b−1)
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Expected mean squares

To test H0 : µ1 = µ2 = ... = µk, the ratio used is

MSTreat
MSE = F(k−1),(k−1)(b−1).

The value of the test statistics is 1, if H0 seems to be true.

Mean separation

In two-way ANOVA the Bonferroni’s test is as in one-way ANOVA

Bonferroni t =
x̄i.−x̄j.√

MSE
(

1
ni

+ 1
ni

) ,
but in Duncan’s test the denominator in shortest significant range has changed

SSRp = rp

√
MSE
b .

2.2.4 Factorial desing two-way ANOVA
Example 19. In an attempt to find the most effective methods for training
companion dogs for the physically challenged, an experiment was conducted to
compare three different training regimes in combination with three different re-
ward systems. All the animals in the study were Labrador retrievers and were 6
to 8 months old at the start of the experiment. Individual dogs were assigned to
a combination of training regime and reward system randomly. At the end of a
10-week training period the dogs were given a standardized test to measure their
ability to function as companion dogs for the visually impaired. The results of
the test were:

training regime
Reward I II II
Praise 45 51 52

69 50 18
53 62 25
51 68 32

Tangible 54 53 51
72 63 59
69 67 47
66 70 42

Praise and
tangible 91 69 66

87 73 68
89 77 70
91 74 64

The behavioral scientist running this study would like to know which training
regime, if any, is best and which reward system is best. Interactions between
training regimes and reward systems are also of interest. These can be positive
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(synergy) or negative (inference).

The experiment is called factorial because we are interested in two different
factors’ effect’s on the measured response. It is completely random because
individuals are assigned to a combination of training regime and reward system
randomly. These combinations are called cells. The effects are fixed because we
are interested in only training regimes I, II, and III, and reward systems praise,
tangible, and praise with tangible. Neither the training regimes nor the reward
systems are chosen at random from a larger group of interest. Thus, this is a
Model I design for both factors.

The factorial desing two-way model

Each observation in the dataset can be thought as the sum of various effects.
For i = 1, ..., a, j = 1, ..., b, k = 1, ..., n.

Model assumptions:

1. The observations in each cell constitute an independent random sample
of size n from a population with mean µij .

2. Each of the populations represented by the cell samples is normally dis-
tributed and has the same variance, σ2.

The model is:

xijk = µ+ αi + βj + (αβ)ij + εijk,

where

• µ is the overall mean,

• αi is the effect due to the fact that the experimental unit receiced the ith
level of factor A

αi = µi.. − µ,

• βj is the effect due to the fact that the experimental unit received the jth
level of factor B

βj = µ.j. − µ

• (αβ)ij is the effect of the interaction between the ith level of factor A and
the jth level of factor B

(αβ)ij = µij. − µi.. − µ.j. + µ,

• εijk is the residual

εijk = xijk − µij
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Sums of squares

Computational formulas are:

SSTotal =
∑
i

∑
j

∑
k x

2
ijk −

T 2
...

abn

SSA =
∑
i

(
T 2
i..

bn

)
− T 2

...

abn

SSB =
∑
j

(
T 2
.j.

an

)
− T 2

...

abn

SSCells =
∑
i

∑
j

(
T 2
ij.

n

)
− T 2

...

abn

These calculations are highly tedicious and are always done with computer pro-
grams. The degrees of freedom associated with the sums of squares are:

SSTotal : v = abn− 1 or N − 1

SSCells : c = ab− 1

SSA : v = a− 1

SSB : v = b− 1

SSA×B : v = (a− 1)(b− 1)

SSError : v = ab(n− 1)

Test for interaction between factors

The hypotheses are

H0 : (αβ)ij = 0 ∀ i, j

Ha : (αβ)ij 6= 0 for some i, j

The appropriate test for null hypothesis is

FA×B = MSA×B
MSE

,

with degrees of freedom

v1 = (a− 1)(b− 1), v2 = ab(n− 1).

As with all ANOVA F tests, if the numerator is significantly larger than the
denominator, the H0 will be rejected.

If the null hypothesis of no interactions is accepted, the analysis is con-
tinued with the help of two tests.

• Test whether there are differences in means for A-factor treatments:

H0 : µi..’s are equal (αi = 0 ∀ i)

Ha : At least on pair of µi..’s is not equal,
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using the test statistic

FA = MSA
MSE

with degrees of freedom

v1 = a− 1, v2 = ab(n− 1).

• Test whether there are differences in means for B-factor treatmens simi-
larly.

If the null hypothesis is rejected, the FA and FB tests are omitted. Because the
levels of Factor A do not behave consistently across the levels of Factor B, and
vice versa, the best combination of A factor and B factor should be used. The
various cell means can be separated with DMRT of the form

SSRp = rp

√
MsE
n .

2.3 Introduction to nonparametric methods in ANOVA
Many of the methods used for inference about the means of quantative response
variables assume that the variables in question have normal distribution in the
populations or populations from which we draw our data. In practice, of course,
no distribution is exactly normal. Fortunately, usual methods for inference
about population means are quite robust. That is, the results of inference are
not very sensitive to moderate lack of normality, especially when samples are
reasonably large. What to do if plotting the data suggests that the data are
clearly not normal, especially when we have only few observations? The basic
options are:

1. If there are extreme outliers in a small data set, any inference method
may be suspect. An outlier is an observation that may not come from
the same population as the other observations. To decide what to do, you
must find the cause of the outlier. Equipment failure that produced a
bad measurement, for example, entitles you to remove the outlier. If the
outlier appears to be "real data", it is risky to draw any conclusions from
just few observations.

2. Sometimes it is possible to transform the data so that their distributions
is more nearly normal.

3. In some settings, other standard distributions replace the normal dis-
tributions as models for overall pattern in the population.

4. Finally, there are nonparametric methods that do not reguire the nor-
mal distribution of the population.
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2.3.1 The Kruskal-Wallis test
A nonparametric analog to Model I one-way ANOVA

Example 20. Preliminary observations on North Stradbroke Island indicated
that the gastropod Austrocochlea obtusa preferred the zone just below the mean
tide line. In an experiment to test this, A. obtusa were collected marked, and
placed either 7.5m above this zone (Upper Shore), 7.5m below this zone (Lower
Shore), or back in the original area (Control). After two tidal cycles, the snails
were recaptured. The distance each had moved (in cm) from where it had been
placed was recorded. Is there significant difference among the median distances
moved by the three groups?

Upper shore Control Lower shore
59 19 5
71 32 13
75 55 15
85 62 41
95 82 46
148 114 51
170 144 60
276 106
347 200

Ranking the data.
Upper shore Rank Control Rank Lower shore Rank
59 10 19 4 5 1
71 13 32 5 13 2
75 14 55 9 15 3
85 16 62 12 41 6
95 17 82 15 46 7
148 21 114 19 51 8
170 22 144 20 60 11
276 24 106 18
347 25 200 23
Sum 162 Sum 84 Sum 79

If the three populations are identical, then the rankings should be randomly
allocated to each of the samples. There is no reason to expect any one popu-
lation to have a large number of high or low ranks. The average rank in each
group should be roughly the same. In this example there is a grand total of
N=25 observations. The average, or expected, rank is the mean (median) value
of the numbers from 1 to 25, which is N+1

2 = 25+1
2 = 13. Under the assumption

of no difference between groups, we expect the average rank within each group
to be roughly the overall average. Since there are 9 observations in the Upper
Shore sample, its average is 162

9 = 18. Similarly the average for the Control is
84
7 = 12 and for the Lower Shore 79

9 = 8.78. The averages are different from
13, but are they significantly different? The test statistics for this situation is
based on these differences, as we describe below.
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Assumptions:

1. Independent random samples of sizes n1, ..., nk are drawn from k contin-
uous populations.

2. The null hypothesis is that all k populations are identical, or equivalently,
that all the samples are drawn from the same population.

We like to test whether all k populations have the same location. Only one pair
of hypotheses is possible:

H0: All k populations have the same median,

Ha: At least one of the populations has a median different from the others.

Test statistic and decision rule

Rank all the observations without regard to the sample they come from. Use
midranks for tied values.

• Let N denote the total number of measurements in the k samples.

• Let Ri denote the sum of ranks associated with the ith sample.

• The grand mean or average rank is N+1
2

• The sample mean rank for the ith sample is Ri
ni
.

The test statistics H measures the dispersion of the sample mean ranks from
the average rank:

H = 12
N(N+1)

∑k
i=1 ni

(
Ri
ni
− N+1

2

)2

.

If the null hypothesis is true, this deviation should be close to 0 since the av-
erage rank should be close to each sample mean rank. If one or more of the
groups has a sample mean rank that differs from the average rank then H will
be positive. The larger H is, the less likely that H0 is true.

Paired comparisons

Once either test is done, the are two possible, mutually exclusionary states that
have realized:

1. We are unable to reject H0: Based on the available data we cannot de-
tect any differences among the k population means, and the analysis is
complete.

2. We were able to reject H0: Based on the available data we conclude there
are differences among the k population means, and the analysis continues.

Following test is the nonparametric analog of the Bonferroni’s t test. Hypotheses
are:

H0: The means of the ith and jth populations are the same.
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Ha: The means of the ith and jth populations are different.

Choose an overall significance level α′. As with the Bonferroni’s test the larger
the k is, the larger α′ must be in order to run the comparisons at a reasonable
level of significance, α. But when α′ is larger, we run a greater risk of rejecting
a null hypothesis inappropriately (Type I error). Therefore, in the design of the
experiment, the number of treatments k under investigation should be kept to
the minimum of those tests of real interest to the researcher.

The test statistic for a two-tailed comparisons of the ith and jth treatments
is based on the difference in mean ranks for the two samples:

zij =

∣∣∣Rini −Rjnj ∣∣∣√
N(N+1

12

(
1
ni

+ 1
nj

) ,
where N is the total number of observations. This test statistics has an approx-
imate standard normal distribution, and z1−α2 is the critical value. Thus, H0 is
rejected if zij ≥ z1−α2 .

2.3.2 The Friedman k-sample test: Matched data
This is a nonparametric analog to Randomized complete block desing ANOVA.
There are four assumptions for the Friedman test:

1. The data consists bmutually independent blocks of samples from k random
variables. The data is presented in b rows and k columns.

2. The random variable xij comes from the ith block and is associated with
treatment j.

3. The k treatments within each block are assigned randomly. Block are
assumed independent.

4. The observations (in blocks) may be ranked according to the variable
interest.

There is only one hypothesis:

H0: All k treatmens have identical effects.

Test uses corrected sum of squares

S =
∑k
j=1

[
Rj − b(k+1)

2

]2
.

If H0 is accepted, then all rank sums of treatments should be close to the ex-
pected value of b(k+1)

2 and S should be close to 0. If H0 is false, S larger.

The Friedman test statistic is:

T = 12
bk(k+1)

∑k
J=1

[
Rj − b(k+1)

2

]2
,
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which should follow χ2
k−1 distribution.

In paired comparisons the hypotheses

H0: The effects of the ith and jth treatments are the same;

Ha: The effect of the treatments are different.

The test statistic for a two-tailed comparisons is

zij =
|Ri−Rj |√
bk(k+1)

6

.

The critical value is z1−α2 . H0 is rejected if zij ≥ z1−α2 .

It should be noted that statistical analysis on variables with clearly non-
normal distributions is totally its own topic, and this section has just been
an introduction on this challenging topic. In general, nonparametric methods
should only be used when there is no other way to analyze the data. In that
case additional reading is also reguired.

More on this topic:
Hollander & Douglas (1999): Nonparametric Statistical Methods. John Wiley
and Sons.
Gutiérrez-Peña, E., & Walker, S.G. (2005). Statistical Decision Problems and
Bayesian Nonparametric Methods. International Statistical Review, 3, 309-330.
Rubin, D.B. (1981). The Bayesian boostrap. The Annals of Statistics, 9, 130-
134.
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Chapter 3

Correlation analysis and
models of regression

3.1 Correlation analysis
Two variables measured on the same individuals (statistical units) are associ-
ated if some values of one variable tend to occur more often with some values
of the second variable than with other variables of that variable.

The correlation measures the direction and strength of the linear relationship
between two quantative variables. If we have data on variables x and y for n
individuals, the means and standard deviations of the variables are x̄ and sx for
the x-values, and ȳ and sy for the y-values. The correlation between x and y is

r = 1
n−1

∑(
xi−x̄
sx

)(
yi−ȳ
sy

)
.

3.1.1 Pearson product-moment correlation coefficient
Pearsons product-moment correlation coefficient is usually just called correla-
tion coefficient.

Consider the standardized normal deviates for x and y

xi−x̄
sx

and yi−ȳ
sy

.

When corresponding deviates are multipled together and summed, we get the
index of association ∑(

xi−ȳ
sx

)(
yi−ȳ
sy

)
.

The association has the following characteristics:

1. If large x’s are associated with large y’s and small x’s with small y’s, then
both (xi − x̄) and (yi − ȳ) will have the same sign and their product will
be positive, and we say that there is a positive correlation between x
and y.
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2. For all pairs of x’s and y’s, if large x’s are associated with small y’s and
vice versa, the index will be negative because (xi − x̄) and (yi − ȳ) will
have opposite signs. Thus we’ll say that there is a negative correlation
between x and y.

If we divide the index of association by n − 1 (degrees of freedom) we obtain
the Pearson product-moment correlation coefficient:

r =
∑

(xi−x̄)(yi−ȳ)

(n−1)sxsy
=

∑
xy− (

∑
n)(

∑
y)

n√[∑2
x−

(
∑
x)2

n

][∑
y2− (

∑
)2

n

] =
SSxy√
SSxSSy

,

whose values have the range −1 ≤ r ≤ 1. The r is also an estimate of the
parameter ρ defined by

ρ =
σxy
σxσy

.

The standard error of the correlation coefficient is

sr =
√

1−r2
n−2 , with degrees of freedom n− 2.

Using this we can develop a test of hypothesis for ρ:

H0 : ρ = 0

Ha : ρ 6= 0

with test statistic

t = r−0
sr

.

Example 21. A malacologist interested in the morphology of West Indian
chitons, Chiton olivaceous, measured the lenght (anterior-posterior) and width
of the eight overlapping plates composing the shell of 10 of these animals. She
would like to know is the length associated with the width of the overlapping
plates.Her data:

Lenght Width
Animal (cm) (cm)
1 10.7 5.8
2 11.0 6.0
3 9.5 5.0
4 11.1 6.0
5 10.3 5.3
6 10.7 5.8
7 9.9 5.2
8 10.6 5.7
9 10.0 5.3
10 12.0 6.3

The correlation coefficient is

r =
599.31− (105.8)(56.4)

10√[
1123.9− (105.8)2

10

][
319.68− (56.4)2

10

] = 2.598√
(4.536)(1.584)

= 0.969
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The standard error of the correlation coefficient is

sr =
√

1−r2
n−2 =

√
1−(0.969)2

10−2 = 0.087.

So the test statistic is

t = r−0
sr

= 0.969−0
0.087 = 11.14

The critical value from t distribution for v=8 with α=0.05 are ±2.306. Thus
there seems to be strong linear correlation between length and width of chiton
shells.

Determination of a 95% confidence interval for ρ is complicated by the fact
that only when ρ = 0 can r considered to come from an approximate normal
distribution. For other values than ρ = 0 Fisher’s Z transformation must be
employed.

Z = tanh−1r = 0.5ln
(

1+r
1−r

)
.

This is usually done with the help of a statistical program. The 95% confidence
interval for for ρ in example 20 is [0.8625, 0.9927]. This again indicates a strong
co-relationship between the two morphological measurements.

In the future the malacologist could save time and energy by measuring only
one of the dimensions, either length or width, because these variables behave in
a coordinated and highly predicteble fashion.

3.1.2 Correlation analysis based on ranks
Data for a correlation analysis can also consists of a bivariate random sample
of paired observations of size n, (x1, y1), ..., (xn, yn). If each pair is assumed to
come from a continuous population, there should be no tied x’s or y’s. However,
with the nonparametric tests described in this secdion it is sufficient if the x
and y observations can be ranked from lowest to highest.

Kendall’s measure of correlation, τ

The Kendall correlation coefficient depends on a direct comparison of the n
observations (xi, yi) with each other. Two observations, for example (190, 186)
and (182, 185), are called concordant if both members of one pair are large
than the corresponding members of the other pair (here 190 > 182 and 186 <
185). A pair of observations, such as (180, 188) and (182, 185) are called dis-
cordant if a number in the first pair is larger than the corresponding number in
the second pair (188 > 185), while the other number in the first pair is smaller
than the corresponding number in the secodn pair (180 < 182). Pairs with at
least one tie between respective members are neither concordant nor discordant.

Let C denote the number of concordant pairs of observations, D the number
of discordant pairs, and E the number of ties. The Kendall correlation coefficient
is defined in terms of the difference between C and D divided by the total
number of comparisons,

τ = C−D
n(n−1)

2

= 2(C−D)
n(n−1) .
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The τ is a statistic, not a parameter. Some notices about τ :

• If all n(n−1)
2 comparisons are concordant (a "perfect" positive correlation),

then τ = +1.

• If all n(n−1)
2 comparisons are discordant, then τ = −1.

• In other cases −1 < τ < +1.

• Ties are not counted in τ since they do not constitute evidence for either
a positive or negative correlation.

Test for independence or zero correlation is conducted using hypotheses:

• H0 : τ = 0 (or "x and y are independent").

• Ha : τ 6= 0 (or "x and y are not independent").

Because exact distribution is difficult to tabulate, this test is usually conducted
with the help of statistical programs.

Spearman’s coefficient, r

On of the most common correlation coefficients that appear in the literature is
Spearman’s rank correlation coefficient, rs. The idea is to rank the x and
y observations separetely and compute the Pearson correlation coefficient on the
ranks rather than on the original data. the value rs is usually different from the
value of Pearson’s r calculated on the original data, but for large sample sizes
the two values are usually relatively close. However, if there are no ties among
the x’s and y’s, then rs can be computed much more simply than Pearson’s r.

Spearman’s rank correlation coefficient (assuming no ties):

rs = 1− 6
∑n
i=1 d

2
i

n(n2−1

where di = rxi − ryi is the difference in the rank of xi and yi.

3.1.3 Properties of correlation
Allthough correlation is fairly simple analysis tool there are several things that
need to be taken into account when interpreting the results of correlation coef-
ficient:

• Correlation makes no use of the distinction between explanatory and re-
sponse variables.

• Correlation requires that both variables be quantative, so that it makes
sense to do the arithmetic indicated by the formula for r.

• Because r uses the standardized values fo the observations, it does not
change when we change the units of measurement of x, y, or both.
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• Positive r indicates positive association between the variables, and nega-
tive r indicates negative association.

• The correlation is always a number between -1 and 1. The values near 0
indicate a very weak linear relationship.

• Correlation measures the strength of only the linear relationship between
two variables.

• Like the mean and standard deviation, the correlation is not resistant: r
is strongly affected by a few outlying observations.

It should also be remembered that correlation is not a complete descrip-
tion of two-variable data, even when the relationship between the variables
is linear. You should report the means and standard deviations of both x and y
along with the correlation. Conclusions based on correlations alone may require
rethinking in the light of a more complete description of the data.

3.1.4 Inference for correlation
The correlation coefficient is a measure of the strength and direction of the linear
association between two variables. Correlation does not require an explanatory-
response relationship between the variables. We can consider the sample corre-
lation r as an estimate of the correlation in the population and base inference
about the population correlation r.

The correlation between variables x and y when they are measured for every
member of population is the population correlation. Let ρ be the population
correlation. When ρ = 0 there is no linear association in the population. In the
case where the two variables x and y are both normally distributed (or jointly
normal), the condition ρ = 0 is equivalent to the statement that x and y are
independent. That is, there is no association of any kind between x and y.

Example 21. Pearsons sample correlation between body density and the
log of the skinfold measures is r= -0.849. The size of the sample is n=92. The
t statistic for testing the null hypothesis that the population correlation is zero
is

t = r
√
n−2√

1−r2

= −0.849
√

92−2√
1−(−0.849)2

=-15.5.

Using n-2=90 we have P<0.0001.
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3.2 Joint distributions
Two variables x and y belong to a same probability space if they describe the
same phenomenom. For example, the whitecell count of a cancer patient (X)
and remainig life time of the patient (Y ) belong to a same probability space.
When variables belong to a same probability space they are said to have a joint
probability distribution that describes their relationship.

If X and Y are discrete random variables, the function f(x,y), which gives
the probability that X = x and Y = y for each pair of values (x,y) within the
range of values of X and Y , is called the joint probability distribution of X and
Y .

Example 22. Let’s assume that a field, which soil is homogenous, is divided
on different areas (n) which has been fertilized with different amounts x1, ..., xn
of the same fertilizer. The observed crop yields are y1, ..., yn. Random variables
xn and yn now clearly belong to a same probability space.

Lets now assume that we have a two dimensional distribution where all
density functions are normal curves. If the two variables are X and Y , then the
two dimensional distribution function has the form

fX,Y =
1

2πσ1σ2

√
1− ρ2

e−q(x,y), (3.1)

where

q(x, y) = 1
2(1−ρ2)

[
(x−µ1

σ1
)2 + (y−µ2

σ2
)− 2ρ(x−µ1

σ1
)(y−µ2

σ2
)
]

In this case

X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2).

It is also easy to show that

σ12 = cov(X,Y ) = E(X − µ1)(Y − µ2) = ρσ1σ2

where parameter ρ represents the correlation coefficient

corr(X,Y ) = cov(X,Y )√
var(X)var(Y )

= σ12

σ1σ2
= ρ

Thus we have a distribution family (represented in equation 3.1) with the pa-
rameters µ1, µ2, σ1, σ2 and ρ (with constraints σ1, σ2 > 0, |ρ| ≤ 1). Instead of
correlation ρ, covariance can also be used as parameter

σ12 = cov(X,Y ) = ρσ1σ2

Lets now assume that we have a two dimensional random variable Z which is
presented in a vector form as Z = (X Y )′. The parameters in the distribution
3.1 are usually grouped to a vector of expected values

µ =

(
µ1

µ2

)
= E

(
X
Y

)
= EZ

and to a covariance matrix
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Σ =

(
σ2

1 σ12

σ12 σ2
2

)
=

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
= E

(
X − µ1

Y − µ2

)
(X − µ1 Y − µ2)

Now the distribution of Z is

Z = (X Y )′ ∼ N2(µ,Σ)

The shape of the distribution function (equation 1) reveals that when

ρ = 0⇐⇒ X ⊥⊥ Y ,

that is, when then population correlation is zero, variables X and Y in vector
Z are said to be independent.

If we form a conditional density function fY |X=x(y), i.e. density function
with the condition that Y is defined by changes in values of X, on equation 3.1,
we have

fY |X=x(y) =
1√
2πσ

e−
1

2σ2
(y−µY (x))2 (3.2)

where

µY (x) = E(Y |X = x).

The conditional distribution function (??) is clearly a one-dimensional nor-
mal distribution function, which is determined by variance (σ2) and the term
(y − µY (x))2.

two.pdf
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3.3 Simple linear regression model

3.3.1 Least-squares regression
Correlation measures the direction and strength of the linear (straight-line) re-
lationship between two quantative variables. If a scatterplot shows a linear
relationship, we could summarize this overall pattern by drawing a line on the
scatterplot.

A regression line is a straight line that describes how a response variable
y changes as explanatory variable x changes. Regression line is often used to
predict the value of y for a given value of x. Regression, unlike correlation,
requires that we have an explanatory variable and a response variable.

Example 23. How do children grow. The pattern of growth varies from
child to child, so we can best understand the general pattern by following the
average height of a number of children. Table 2.7 presents the mean heights of
a group of children in Kalama, an Egyptian village that was the site of a study
of nutrition in developing countries. The data were obtained by measuring the
heights of 161 children from the village each month from 18 to 29 months of age.

KalamaI.pdf

Figure 3.1 below is a scatterplot of the data in table 2.7. Age is the explana-
tory variable, which we plot on the x axis. The plot shows a strong positive
linear association with no outliers. The correlation is r=0.994, so a line drawn
trough the points will describe these data very well.

fig211.pdf

Figure 3.1: KalamaI
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fig212.pdf

Figure 3.2: KalamaII

3.3.2 Fitting a line to the data
Fitting a line to data means drawing a line that comes close as possible to the
points. The equation of a line fitted to the data gives a compact description
of the dependence of the response variable on the explanatory variable. It is a
mathematical model for the straight-line relationship.

Suppose that y is a response variable and x is a explanatory variable. A
straight line relating y to x has an equation of the form

y = a+ bx

In this equation, b is the slope, the amount by which y changes when x increases
by one unit. The number a is the intercept, the value of y when x = 0.

Any straight line describing the Kalama data has the form

height=a+ b× age.

In figure 3.2 we have drawn the regression line with the equation

height=64.93+0.635×age.

The figure 3.2 shows that this line fits the data well. The slope b=0.635
tells us that the height of Kalama children increases by about 0.6 centimeter
for each month of age. The slope b of a line y = a+ bx is the rate of change in
the response y as the explanatory variable x changes. The slope of a regression
line is an important numerical description of the relationship between the two
variables. The intercept a=64.93 cm, would be the mean height at birth if the
straight-line pattern of growth were true starting at birth. Children don’t grow
at fixed rate from birth, so the intercept a is not important in our situation
except as part of the equation of the line.

We can use a regression line to predict the response y for a specific value
of x. The accuracy of predictions from a regression line depends on how much
scatter about the line the data shows. In the Kalama example, the data points
are all very close to the line, so we are confident that our prediction is accurate.
If the data show a linear pattern with considerable spread, we may use a regres-
sion line to summarize the pattern but we will put less confidence in predictions
based on the line (figure 3.3).

Extrapolation is the use of a regression line for prediction far outside the
range of values of the explanatory variable that you used to obtain the line.
Such predictions are often not accurate.
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In Kalama data birth (age 0) lies outside the range of data. Thus the esti-
mate on mean height at birth (64.93 cm) is inaccurate. This is also a question
of parent population. In Kalama example your parent population is clearly re-
stricted to Kalama and you cannot use it to predict the height of children in
Cairo, much less in Tokyo.

3.3.3 Method of least-squares
Diffent people might draw different lines by eye on a scatterplot. This holds
especially in cases when data points are widely scattered. No line will pass
exactly through all the points, but we want one that is as close as possible. We
will use the line to predict y from x, so we want one that a line that is as close
as possible to the points in the vertical direction. That’s because the prediction
errors we make are errors in y, which is the vertical direction in the scatterplot
(in this case). If we predict 85.25 centimeters for the mean height at age 32
months and the actual mean turns out to be 84 centimeters, our error is

error=observed height - predicted height=84 - 85.25= -1.25 centimeters.

We want a regression line that makes these prediction errors as small as possi-
ble. Figure 3.4 illustrates the idea. For clarity, the plot shows only three of the
points from figure 3.2, along with the line, on an expanded scale.

The least-suares regression line of y on x is the line that makes the sum
of the squares of the vertical distances of the data points from the line as small
as possible.

If we have n observations on two variables x and y as

(x1, y1), ..., (xn, yn)

and we draw a line y = a+ bx through the scatterplot of these observations, the
line predicts the value of y corresponding to xi as ŷ = a+ bxi.

The method of least-squares chooses the line that makes the sum of the
squares of these errors as small as possible. To find this line, we must find the
values fo the intercept a and the slope b that minimize

S(a, b) =
∑

(error)2 =
∑

(yi − a− bxi)2

for given observations xi and yi. Function S is minimized by taking partial
derivatives with respect to a and b:

∂S
∂a = 2na− 2

∑
yi + 2

∑
xib

∂S
∂b = 2

∑
x2
i b− 2

∑
xia

Kalamaesim.pdf

Figure 3.3: KalamaIII
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fig213.pdf

Figure 3.4: KalamaIV

and setting these partial derivatives to zero and multiplying them by 0.5, from
which we get

na−
∑
yi +

∑
xib = 0∑

x2
i b−

∑
xiyi +

∑
xia = 0.

Thus, the parameter estimators are:

a = ȳ − bx̄
b =

n
∑
xiyi−

∑
xi
∑
yi

n
∑
x2
i−(

∑
xi)2

We have data on an explanatory variable x and a response variable y for n
individuals. The means and standard deviations of the sample data are x̄ and
sx for x and ȳ and sy for y, and the correlation between x and y is r. The
equation of the least-squares regression line of y on x is

ŷ = a+ bx

with slope

b = r
sy
sx

and intercept

a = ȳ − bx̄.

Example 24. From table 2.7 the mean and standard deviations of the 12 ages
are

x̄=23.5 months and s̄x=3.606 months

The mean and standard deviation óf the 12 heights are

ȳ=79.85 cm and sy=2.302 cm.

The correlation between height and age is r=0.9944. Thus

b = 0.9944 2.302
3.606=0.6348 cm per month

and intercept

a=79.85-0.6348×23.5 = 64.932 cm

The equation of the least-squares line is

ŷ=64.932+0.6348x.
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3.3.4 Interpreting the regression line
The slope b=0.6348 centimeters per month in example 24 is the rate of change
in the mean height as age increases. The unit "centimeters per month" come
from the units of y (centimeters) and x (months). Although the correlation
does not change when we change the units of measurement, the equation of the
least-squares line does change. The slope in centimeters per month is 2.54 times
as large as the slope in iches per month, because there are 2.54 centimeters in
an inch.

The expression b = r
sy
sx

for the slope says that along the regression line, a
change of one standard deviation in x corresponds to a change of r
standard deviations in y. When the variables are perfectly correlated (r=1 or
r=-1), the change in the predicted response ŷ is the same (in standard deviation
units) as the change in x. Otherwise, because −1 ≤ r ≤ 1 the change in ŷ is
less than the change in x. As the correlation grows less strong, the prediction ŷ
moves in less in response to changes in x.

The least-squares regression line always passes trough the point
(x̄, ȳ) on the graph of y against x.

3.4 Inference for regression
A simple linear regression studies the relationship between a response variable
y and a single explanatory variable x. We expect that different values of x will
produce different mean responses. Figure 5 illustrates the statistical model for
a comparison of the blood pressure in two groups of experimental subjects, one
group taking a calcium supplement and the other a placebo.

fig101.pdf

Figure 3.5: Calcium and placebo

In linear regression the explanatory variable x can have many different val-
ues. We can think of the values of x as defining different subpopulations, one
for each possible value of x. Each subpopulation consists of all individuals in the
population having the same value of x. If you, for example, give x=1500 mil-
ligrams of calcium to everyone, then these are subjects "who actually received
1500 milligrams of calcium". In this case, the subpopulation would be the same
as the sample.

The statistical model for simple linear regression assumes that for each value
of x the observed values of the response variable y are normally distributed
about a mean that depends on x. We use µy to represent these means. We
are interested in how the many means µy changes as x changes. In general the
means µy can change according to any sort of pattern as x changes. In simple

46



linear regression we assume that they all lie on a line when plotted againts x.
The equation of the line is

µy = β0 + β1x.

This is the population regression line; it describes how the mean response
changes with x. The model assumes that this variation, measured by the stan-
dard deviation σ, is the same for all values of x.

3.4.1 Simple linear model
Example 25. In example 22 it was assumed that we had a field, which soil
is homogenous, and which is divided on different areas (n) which have been
fertilized with different amounts x1, ..., xn of the same fertilizer. The observed
crop yields are y1, ..., yn. We would like to build a model that would describe
the effect of fertilization of the crop yields.

Lets assume that observed yields can be intrepeted as observed values of
independent random variables Y1, ..., Yn. We are interested on the expected
values of these random variables, namely E(Yi) ≡ µi, which depend on the pre-
chosen and non-random amounts of fertilizer xi (i = 1, ..., n). We assume that
this relationship is linear µi = β1 + β2xi. We also assume that the amount of
fertilizer does not affect on the (unknown) variances of the random variables Yi,
i.e. var(Yi) = σ2 for all i = 1, ..., n.

The model is
Yi = β1 + β2xi + εi, i = 1, ..., n, (3.3)

where ε1, ..., εn are independent, identically distributed random variables with
E(εi) = 0 and var(εi) = σ2. As with ANOVA these can be interpreted as ran-
dom fluctuations, which is not explained by the amount of fertilizers.

Equation 3.3 is called a simple linear regression model. A general linear
model assumes that variables are normally distributed and that they have a joint
normal distribution, i.e. they have a multinormal distribution. Because amount
of fertilizers is interpreted as non-random, the joint probability distribution is
formed by the assumption

Yi ∼ N(β1 + β2xi, σ
2)

fig102.pdf

Figure 3.6:

Although it is reasonable to assume that β1 > 0, we model parameter space
on more common way β1, β2 ∈ R, σ2 > 0. Usually it is also assumed that

εi ∼ N(0, σ2)

In general, given n observations on the explanatory variable x and the response
variable y
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(x1, y1), ..., (xn, yn)

the statistical model for simple linear regression states that the observed
response yi when the explanatory variable takes the value xi is

yi = β0 + β1xi + εi.

Here β0 + β1xi is the mean response when x = xi.

Because the means µy lie on the line µy = β0 + β1x, they are all determined
by β0 and β1. Once we have the estimates of β0 and β1, the linear relationship
determines the estimates of µy for all values of x. Linear regression allows us
to do inference not only for subpopulation for which we have data but also for
the corresponding to x’s not present in the data.

3.4.2 Estimating the regression parameters
The predicted value of y for a given value x∗ of the x is the point on the least-
squares line ŷ = b0 + b1x∗. This is an unbiased estimator of the mean response
µy when x = x∗. The residuals are

ei=observed response - predicted response

= yi − ŷi

= yi − b0 − b1xi.

The residuals correspond to the model deviations εi. The ei sum to 0, and the
εi come from a population with mean 0.

The remaining parameter to be estimated is σ, which measures the variance
of y about the population regression line. Because this parameter is the standard
deviation of the model deviations, we use the residuals to estimate it:

s2 =
∑
e2i

n−2 =
∑

(yi−ŷi)2
n−2

3.4.3 Assumptions in linear regression models
Let

yn = β′Xn + εn

be a linear regression model, where β is a vector of parameters to be estimated
and Xn a vector of explanatory variables. Following assumption must be valid
in order to make the estimation of the above model feasible in such a way that
the estimates are subject to statistical inference:

1. E(εn|xn) ≡ 0

2. cov((ε1, ..., εn)′) = σ2I

3. {εn} ⊥⊥ {Xn}

4. εn ∼ NID(0, σ2)
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3.4.4 Confidence intervals and tests of significance
In regression analysis the basic idea about variation in the data is similar to
that in the ANOVA. That is

DATA=FIT+RESIDUAL

This can also be expressed as

(yi − ȳ) = (ŷi − ȳ) + (yi − ŷi)

If we square each of the three deviations above and then sum over all n obser-
vations, it is algebraic fact that the sums of squares add:∑

(yi − ȳ)2 =
∑

(ŷi − ȳ)2 +
∑

(yi − ŷi)2

This equation can be rewrited as

SST = SSM + SSE

Where T, M, and E stand for total, model, and residual (or unexplained varia-
tion). Estimate on the variance about the population regression line is:

MSE = s2 =
∑

(yi−ŷi)2
n−2

With the help of these we can calculate the standard errors for estimated regres-
sion coefficients or SE’s. The standard error of the slope b1 of the least-squares
regression line is

SEb1 = s√∑
(xi−x̄)2

.

The standard error of the intercept b0 is

SEb0 = s
√

1
n + x̄2∑

(xi−x̄)2

donfidenceandsignicance.pdf

50



The fraction of variation in y explained by x can be calculated with the help
of sums of squares, namely

r2 = SSM
SST

=
∑

(ŷi−ȳ)2∑
(yi−ȳ)2 .

This is because SST is the total variation in y and SSM is the variation due to
the regression of y on x.

3.4.5 The ANOVA table
Source DF SS MS F
Model p

∑
(ŷi − ȳ)2 SSM/DFM MSM/MSE

Error n− p− 1
∑

(yi − ŷi)2 SSE/DFE
Total n− 1

∑
(yi − ȳ)2 SST /DFT

ANOVAregression.pdf

3.5 Multiple regression

3.5.1 Inference for multiple regression
In the multiple regression setting, the response variable y depends on not one
but n explanatory variables. These explanatory variables will be denoted by
x1, x2, ..., xn. The mean response is a linear function of the explanatory vari-
ables:

µy = β0 + β1x1 + β2x2 + ...+ βnxn.

This expression is the population regression equation. We do not observe
the mean response because the observed values of y vary about their means.
We can think of subpopulations of responses, each correponding to a particular
set of values for all of the explanatory variables x1, ..., xn. In each subpopula-
tion, y varies normally with a mean given by the population regression equation.

3.5.2 Multiple linear regression model
Statistical unit Response variable; y Explanatory variables; x1, ..., xp
1 y1 x11,...,x1p

. . .

. . .

. . .
n yn xn1, ..., xnp
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If Y1, ..., Yn are random variables, whose observed values are y1, ..., yn like in
equation 3.3, the general linear model can be defined as

Yi = β1xi1 + ...+ βpxip + εi, i = 1, .., n (3.4)

from which the equation 3.3 is a special case where P = 2 and xi1 = 1 ∀
i. In equation 3.4 the explanatory variables (xij) on the right side are non-
random or fixed numbers, β1, ..., βp are unknown parameters, and ε is a non-
observable random variable that is related to statistical unit i. εi describes the
part of the variation in the response variable that the explanatory variables or
their linear combination β1xi1 + ... + βpxip cannot explain. Linear combina-
tion β1xi1 + ... + βpxip is called the structure or systematic part of the model.
Linearity means that systematic part of the model is a linear function of the
parameters β1, ..., βp and that the residual becomes added to the systematic
part additively. In order to make the model 4 functional under the assumption
of statistical inference the joint distribution function and parameter space must
be determined. This is done by incorporating the assumptions 1-4 presented
in section 3.3 in to model 4. Assuming NID (normal, identical distribution) on
residuals transforms model 4 to a multiple linear regression model.

The multiple linear regression model is a special case of the general linear
model in equation 3.3.

Yi = β1 + β2xi2 + ...+ βpxip + εi, i = 1, ..., n. (3.5)

In this case is assumed that variables in the model are an SRS from a normally
distributed population.

multiplelinear.pdf
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Example 26. Lets consider a study where factors that affect on the short-
run growth of trees were studied. In the long run the growth of trees is deter-
mined by rainfall, soil, and many other factors. In short-run it can be argued
that the single most important factor that determines the level of growth hor-
mone in a tree is temperature (x). To study this, growth of a single pine seedling
were observed in two hour intervals for 10 days. The height of the seedling was
measured with a measuring rod and a automatic camera, with the accuracy of
the measurement being 0.1 millimeters.

A simple linear model was fitted on the data:

Yt = β1 + β2Xt + εt, εt ∼ NID(0, σ2)

where

Yt is the growth rate of the pine during time period t
Xt is the temperature during time period t.

After regression the parameter estimate of β2 was β̂2 = 0.053 and the "explana-
tory power" of the model was R2

X,Y = 0.32.
However, because the temperature usually changes rather slowly, the Xt−1

might also effect on the value of the explanatory variable on time t. If this is
not taken into account in the model, estimated effects of imminent temperature
changes (on time t) on the growth rate may be biased. Thus if the changes in
the temperature affect on the growth rate of the pine after two hours, Xt−1 does
have an effect also on Yt. On the other hand, temperature changes for over 4
hours or more can also affect on the growth rate. Therefore, the model should
be something like

Yt = β1 + β2Xt + β3Xt−1 + β4Xt−2 + β5Xt−3 + εt.

Estimation of above model gives β̂2 = 0.021 and R2
X,Y = 0.51. The fit of the

model is considerably better.

Even if discarding the additional explanatory variables would not lead to bi-
ased parameter estimates, there might be other reasons why one would want to
include "additional" explanatory variables on the model. One goal could be the
attemp to build a quantative model that had the greatest possible explanatory
power on the variations in y. Other reasons might include:

• urge to describe and test the dependencies (or interactions) between ex-
planatory variables x and response variable y,

• forecasting the values of y with the help of some background measures xn,

• and finding out the suitable values of x when one wants to guide y to a
certain level.

3.5.3 Estimation of multiple regression parameters
Let

b0, b1, ..., bn

denote the estimators of the parameters
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β0, β1, ..., βn.

For the ith observation the predicted response is

ŷi = b0 + b1xi1 + ...+ bpxip

The ith residual, the difference between the observed and predicted response, is
therefore

ei=observed response - predicted response
= yi − ŷi

= yi − b0 − b1xi1 − ...− bpxip

The method of ordinary least squares chooses the values of the b’s that
make the sum of the squares of the residuals as small as possible. In other
words, the parameter estimates b0, b1, ..., bp minimize the quantity

S(b0, b1, ..., bp) =
∑

(yi − b0 − b1xi1 − ...− bpxip).

This is done the same way as in the case of simple linear regression model. First
we take partial derivatives on S with respect ot parameter estimates:

∂S
∂bj

= 2
∑
ei
∂ei
∂bj

= −2
∑
ei

yi
∂bj

= −2
∑
eixij

Thus the parameter estimates b0, ..., bp satisfies p simultaneous equations∑
êixij = 0, ∀ j = 0, 1, ..., p

In matrix notation X ′ê = 0. When we insert ê = y −Xb in to this, we get

X ′(y −Xb) = 0.

Solving for b gives:

bOLS = (X ′X)−1X ′y

The parameter σ2 measures the variability of the responses about the popu-
lation regression equation. As in the case of simple linear regression, we estimate
σ2 by an average of the squared residuals. The estimator is

s2 =
∑
e2i

n−p−1

=
∑

(yi− ˆyi)2

n−p−1

The quantity n − p − 1 is the degrees of freedom associated with s2. The
degrees of freedom equal the sample size n minus p + 1, the number of β’s we
must estimate to fit the model. In the simple linear regression case there is just
one explanatory variable, and p = 1 and the degrees of freedom are n − 2. To
estimate σ we use

s =
√
s2

3.5.4 Confidence intervals and significance tests for re-
gression coefficients
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3.5.5 ANOVA table for multiple regression
Source DF SS MS F
Model p

∑
(ŷi − ȳ)2 SSM/DFM MSM/MSE

Error n− p− 1
∑

(yi − ŷi)2 SSE/DFE
Total n− 1

∑
(yi − ȳ)2 SST /DFT

In multiple regression analysis the hypotheses tested are

H0 : β1 = β2 = ... = βp = 0

Ha : At least one of the βj is not 0.

ANOVAm.pdf

For simple linear regression we noted that the square of the sample correla-
tion could be written as the ratio of SSM to SST and could be interpreted as
the proportion of variation in y explained by x. A similar statistic is routinely
calculated for multiple regression. The statistic

R2 = SSM
SST

=
∑

(ŷi−ȳ)2∑
(yi−ȳ)2

is called the squared multiple correlation. Often R2 is multiplied by 100
and expressed as a percent. The square root of R2 is called multiple correla-
tion coefficient, and it measures the correlation between the observations yi
and the predicted values ŷi.

3.6 Notes

3.6.1 Identification
Lets assume that we have a model

Y = β1 + β2X + ε, ε ∼ N(0.σ2) (3.6)

but there would be interactions between quantative variables y and x, which
describe the random variables X and Y , i.e there would be interactions on
x −→ y and also on y −→ x. In this case the assumption 3 ({εn} ⊥⊥ {Xn})
would be unrealistic, because the ε was assumed to be part of the random
variable Y . Because the Y would affect on X, X could not be independent on
ε.

This can demonstrated by modelling the both interactions with linear re-
gression models:

Y = β1 + β2X + ε,N(0, σ2) (3.7)

X = γ1 + γ2Y + ε∗, N(0, σ2
∗ (3.8)
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Even if "errors" ε and ε∗ were assumed independent, the distribution of vari-
ables X and Y would still be some two-dimensional normal distribution in above
model. In all two-dimensional distributions only there are only 5 parameters
that can be estimated. However, there are already six parameters in the above
models. Thus it does not contain enough information so that all six parameters
could could be estimated.

This can also be shown by denoting that correlation coefficient ρ = corr(X,Y )
in a symmetric measure of dependence. So, if there are causal relationships in
both directions, correlation cannot be used to interpret the relationships.

Another way to describe this identification problem would be to consider the
moments of linear regression model:

Y = β1 + β2X + ε, ε ⊥⊥ X, ε ∼ N(0, σ2), (3.9)

where our parameter space is

B = {(β1 β2 σ2)′|σ2 ≥ 0} ⊂ <3.

We can estimate our model (3.9) by using moments of random variables. These
are expected values, variance, covariance, etc. From model (3.9) we can see that E(Y ) = β1 + β2E(X)

cov(X,Y ) = β2var(X)
var(Y ) = β2

2var(X) + σ2

Now we have three "unknown" parameters β1, β2 and σ2, which can be solved
from the three equations above:

β2 = cov(X,Y )
var(X)

β1 = E(Y )− β2E(X) = E(Y )− cov(X,Y )
var(X) E(X)

σ2 = var(Y )− β2
2var(X) = var(Y )

(
1− cov(X,Y )2

var(X)var(Y )

)
.

The moments that are present in these expressions can be estimated with "sam-
ple moments":

Ê(X) = X̄ = 1
n

∑n
i=1Xi,

Ê(Y ) = Ȳ = 1
n

∑n
i=1 Yi,

̂var(X) = S2
X = 1

n−1

∑n
i=1(Xi − X̄)2,

v̂ar(Y ) = S2
Y = 1

n−1

∑n
i=1(Yi − Ȳ )2,

̂cov(X,Y ) = SX,Y = 1
n−1

∑n
i=1(Yi − Ȳ )(Xi − X̄).

By writing correlation coefficient as

RX,Y = cov(X,Y )√
var(X)var(Y )

=
∑n
i=1(Yi−Ȳ (Xi−X̄)√∑n

i=1(Xi−X̄)2
∑n
i=1(Yi−Ȳ )2

,

our parameter estimates become

β̂2 = SX,Y = RX,Y
SY
SX

β̂1 = Ȳ − β2X̄ = Ȳ −RX,Y SY
SX
X̄

σ̂2 = S2
Y (1−R2

X,Y ).
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However, if the assumption {εn} ⊥⊥ {Xn} is broken, we have simultaneous
equation model like the one presented in models 3.7 and 3.8. In this case our
parameter space would be B = {(β1 β2 γ1 γ2 σ2 σ2

∗)
′|σ2, σ∗ ≥ 0} ⊂ <6.

Now there are six parameters, but we only have 5 sample moments (5 dimen-
sional parameter space) in the joint normal distribution of two random variables.
Therefore we do not have enough information in the model (3.6) so that all the
parameters in the model could be estimated.

Example 27. Consider the annual development of prices and wages. It can
be argued that wages affect prices and prices affect wages. Therefore there is
a clear two-way causal relationship and regression analysis cannot be used to
analyze this dependence.

In this case there would be a need to find some instrumental variable Z
on X, that would be highly correlated with X, but EZε ≡ 0. This instru-
mental variable would provide enough information for the identification of all
the parameters in equation 6. The estimation would now be conducted with
instrumental variables estimator:

bIV E = (Z ′X)−1Z ′Y

However, this method is beyond the scope of this course. Additional reading:
- Pearl, J. Causality: Models, Reasoning, and Inference, Cambridge University
Press, 2000.
- Greene, William, H. Econometric Analysis, Prentice Hall, 2000/2003.

Lets now assume that variables x and y are related to each other through
some "deterministic" physical law. In these situations there is usually a need
to prepare for considerable measurement errors when measuring the variables x
and y. Lets concider the setup where these observations would be described by
random variables X and Y , where

y = β1 + β2x
Y = y + ε
X = x+ ε∗

Then a model that would describe these observations would be of the form

Y = β1 + β2X + κ, (3.10)

κ = ε− β2ε∗ ∼ N(0, σ2 + β2
2σ

2
∗)

In this case the assumption κ ⊥⊥ X is clearly unrealistic, because ε∗ is included
in both κ and X. If x could be measured without error, i.e. σ2

∗ = 0, there
would, of course, be no problem. Thus the variable that is measured with
greater error should be the response variable. Alternatively could try to
find some instrumental variable Z.

3.6.2 Linearity in parameters
Linearity in regression models means that regression function is linear with re-
spect to parameters β, not with respect to values of x. This means that, if the
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relationship between variables x and y can be linearized with some tranforma-
tion, even some non-linear relations between variables can be examined using
regression analysis.

Example 28. Does the GDP level of a nation affect on its population level?
In development economics, some theories argue that too high population could
lead to a poverty trap, where economy of cannot grow because providing the
population requires a "lions share" of the capital. The dataset includes data on
real gross domestic product per capita (GDP) (with the base year 1996), and
population rate (thousands) in 188 countries in 2000.

GDP.pdf

summa.pdf
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The figures show that although the fit for data is not so good, the common
behaviour of variables can be described with two-dimensional normal distribu-
tion, where the regression function of Y with respect to X would be linear. So,
random variables population = eX and GDP = eY could be used to describe
the quantative variables GDP and population. Now we have

E(GDP |population = w) = E(eY |log(population) = logw)

= E(eβ1+β2X+ε|X = logw)

= eβ1+β2logwE(eε|X = logw)

= eβ1wβ2E(eε)

= β∗1w
β2

where β∗1 = eβ1E(eε). Now, when β2 < 0, the regression function (the third
function above) does somewhat resemble the original values of GDP and popu-
lation in the scatterplot above.

However, this model might suffer from under identification, because the as-
sumption that GDP level does not affect on the level of population may be
unrealistic. Some theories in demography argue that the population growth
slows as country gets more richer. Thus, there would be a two-way causal re-
lationship between the variables and assumption of probabilistic independence
between the two variables would be invalid.

The point in the above example was to show that one should always pay
enough attention on the "initial transformation" of variables before conducting
a regression analysis. Otherwise the estimated model could produce extremely
poor fit on the data and obtained parameter estimates could be biased.

3.7 Introduction to the analysis of time series
A series yt in which the values of the dependent (response) variable y is observed
successively on time periods t, is called a time series. Usually observations are
collected with equal intervals so that the time index gets some whole numbered
values, for example between t = 1, ..., n.

The general linear regression model has some limitations when it is used to
desribe time series data.

yt = β′Xt + εt (3.11)

where εt ⊥⊥ Xt and Eεt ≡ 0.

We, of course, have to know that the causality is of the form Xt −→ yt. In
addition, we usually are forced to accept some facts, when we want to model
the relationships between time series in realistic way:

• The explanatory variable’s Xt effect on the response variable may be lag-
ging.

• Usually, it is not possible to construct such a linear combination β′Xt that
yt − β′Xt would have a totally irregular variation with respect to time.
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Thus, in many cases, the "static" regression model (3.11) has to be replaced
with its "dynamic" form

yt = β′0Xt + β′1Xt−1 + β′2Xt−2 + β′3Xt−3 + ...+ εt (3.12)

εt ⊥⊥ Xt, Eεt ≡ 0, but E(εtεt′) 6= 0 when t 6= t′.

More complicated models are needed if there are interactions between yt and Xt.

3.7.1 Expectations and stationarity of a series
If we concider a sequence of T independent and identically distributed (i.i.d.)
variables εt,

{ε1, ε2, ..., εT }

with

εt ∼ N(0, σ2), and Eεt = 0

this is called a Gaussian white noise process. In this kind of time series model,
there is no systematic variation.

Consider a realization (a observed sample) of some random variable Yt:

{y1, y2, ..., yT }. (3.13)

The expexted value of this series might be viewed as the probability limit of the
ensemble average:

E(Yt) = plimI→∞(1/I)
∑I
i=1 Y

(i)
t .

If, for example, process {Yt}∞t=−∞ presents the sum of a constant µ plus a
Gaussian white noice process {εt}∞t=−∞, it is

Yt = µ+ εt. (3.14)

The mean of this series is

E(Yt) = µ+ E(εt) = µ.

If Yt is a time trend plus gaussian white noise,

Yt = βt+ εt,

its mean is

E(Yt) = βt

The expected value of Yt with respect to it lagged values

γjt = E(Yt − µt)(Yt−j − µt−j),

with some number of j observations, is called autocovariance of a process (3.13).
For example for process (3.14) the autocovariances are
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γjt = E(Yt − µ)(Yt−j − µ) = E(εtεt−j) = 0 for j 6= 0.

If the mean µ and the autocovariances γjt do not depend on time t

E(Yt = µ), ∀ t
E(Yt − µ)(Yt−j − µ) = γj ∀ t and j

then the process Yt is said to be weakly stationary. Other way to describe
stationarity is to consider the values Yt, ..., Yt+p as a joint distribution functions
of random variable Yt with respect to time t1, ..., tp. Let FYt1 ,...,Ytp represent a
cumulative distribution function of the joint distributions of Yt. Now, if

FYt1 ,...,Ytp = FYt1+τ ,...,Ytp+τ ∀ p, τ, t1, ..., tp

process is said to be strongly stationary. In more general terms a process is
said to be stationary if it has no systematic variation, for example time trends.
White noice process described above is a strongly stationary process.

usa.pdf

usag.pdf
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3.7.2 MA and AR processes
A process

Yt = µ+ εt + θεt−1, E(εt) = 0 and E(ε2t ) = σ2, (3.15)

where µ and θ could be any constants, is called first order moving average pro-
cess denoted as MA(1). Equation (3.15) is called as moving average because
Yt is constructed from a weighted sum, or average, of two most recent values of ε.

The expected value of (3.15) is

E(Yt) = E(µ+ εt + θεt−1) = µ+ E(εt) + θE(εt−1) = µ,

where µ represents a constant term which is anticipated to be the mean of the
process. The variance of Yt is

E(Yt − µ)2 = E(εt + θεt−1)2

= E(ε2t + 2θεtεt−1 + θ2ε2t−1)

= σ2 + 0 + θ2σ2 (3.16)

= (1 + θ2)σ2

A qth order moving average process has a form

Yt = µ+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q (3.17)

E(εt) = 0, E(ε2t ) = σ2

where (θ1, ..., θq) could be any real numbers. The mean of the process (3.17) is
again µ, and the variance

E(Yt − µ)2 = (1 + θ2
1 + θ2

2 + ...+ θ2
q)σ

2.

A process that satisfies the difference equation

Yt = c+ φYt−1 + εt (3.18)

E(εt) = 0, E(ε2t ) = σ2

is called a first-order autoregression or AR(1). When |φ| < 1 the process (8)
has a solution

Yt = (c+ εt) + φ(c+ εt−1) + φ2(c+ εt−2) + ...

= [c/1− φ] + εt + φεt−1 + ... (3.19)

Thus, the mean of a stationary AR(1) process is

E(Yt) = [c/(1− φ)] + 0 + 0...

⇒ µ = c/(1− φ) (3.20)

Similar to MA processes, the pth-order autoregression, AR(p), satisfies

Yt = c+ φtYt−1 + φ2Yt−2 + ...+ φpYt−p + εt (3.21)

E(εt) = 0, E(ε2t ) = σ2.
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Figure 3.7: Hamilton 1994
.
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3.7.3 ARX models
Mixed average moving average, or ARMA, processes are processes that include
both the autoregressive and the moving average terms:

Yt = c+φ1Yt−1 +φ2Yt−2 + ...+φpYt−p+εt+θ1εt−1 +θ2εt−2 + ...+θqεt−q (3.22)

Estimation of the parameters in combined (ARMA) time series models (3.22) is
clearly more complicated than in the case of normal linear regression and these
models are beyond the scope this course. However, there are one type of time
series models whose estimation is quite straightforward. These are called ARX
models.

Lets assume that factors Xt would define the target level yt∗ of the response
variable according to

yt∗ = β′Xt, t = 1, ..., n,

but the process of yt would include some "inertia" according to

yt − yt−1 = α(yt ∗ −yt−1) + εt, εt ⊥⊥ Xt, 0 < α < 1.

Thus, we would have a model

yt = (1− α)yt−1 + αβ′Xt + εt (3.23)

εt ∼ NID(0, σ2), εt ⊥⊥ Xt, t = 2, ..., n

Model (3.23) is a simplest formulation of difference model, and it can also be
interpreted as

yt = µ+ (1− α)yt−1 + εt (3.24)

where the exogenous variables Xt would only affect linearly on the level (µα ) to
where yt is stabilizing. The model is

α(L)yt = µ+

m∑
i=1

wi(L)xit + εt. (3.25)

{εt} ⊥⊥ {xit, ..., xmt}, εt ∼ NID(0, σ2)

α(L) = 1− α1L− ...− αpLp

wi(L) = wi0 − wi1 − ...− wiriLri ,

Where (L) denotes lag operator, i.e. (L)yt = yt−1, (L2)yt = yt−2, etc.. The
parameters in model (3.25) can be estimated utilizing the OLS (ordinary least
squares) techniques.

The model (3.25) includes one restrictive assumption on the evolution of yt.
That is, the exogenous factors xt can only affect linearly on the location of
"equilibrium" of the system, but not on to the structure of the system. This
way of reasoning might be suitable in some applications, but certainly not in
general. The "solution" of the model (15) is
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yt = µ
α(1) +

∑m
i=1

wi(L)
α(L) + 1

α(L)εt,

which would mean that the effect of every explanatory variable on yt should the
of the same form on long lags. This is not very realistic assumption in many
cases.

Example 29. On example 26 factors that affect on the short-run growth of
trees were studied. We had a simple linear model that was fitted on the data:

Yt = β1 + β2Xt + εt, εt ∼ NID(0, σ2)

where

Yt is the growth rate of the pine during time period t
Xt is the temperature during time period t.

and a "expanded" model:

Yt = β1 + β2Xt + β3Xt−1 + β4Xt−2 + β5Xt−3 + εt.

In addition to this we might also think that the growth in previous periods might
affect on the growth rate. For example the production of growth hormone might
depend on the production of growth hormone in the previous period. If we would
like to take this into account, the model should be transformed to

Yt = µ+ φ1Yt−1 + β1Xt + β2Xt−1 + β3Xt−2 + β4Xt−3 + εt.

So, we are now assuming that the production of growth hormone stabilizes to a
certain level that is determined by the temperature.

3.8 Introduction to the analysis of panel data
A panel data set or longitudinal data consists of several, usually short time
series (index t = 1, ..., T ) for several cross-sectional units (index i = 1, ..., n).
i can be country, a municipality, a firm, tree, field and so on. Therefore, the
observations on y can be collected to a single vector, for example:

Yi = (yi,1 ... yi,T i)
′ i = 1, ...,m

Y = (Y ′1 ... Y ′m)′.

Example 30. In examples 26 and 29 a study where factors that affect
on the short-run growth of trees were examined. Our response variable was the
growth rate of a single pine seedling. If we had observations on 30 pine seedlings
measured in the same time intervals, our original model

Yt = β1 + β2Xt + εt, εt ∼ NID(0, σ2)

would transform to

Yit = β1 + β2Xit + εit, εit ∼ NID(0, σ2)
i = 1, ..., 30.

(3.26)
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Now we have a panel data, i.e. time series of observations from 30 different pine
seedlings.

The use of panel data posses several major advantages over conventional
cross-sectional or time-series data. Panel data usually give the researcher a
large number of data points, which increases the degrees of freedom and thus
improves the efficiency of estimates. Panel data also allows researcher to analyze
a number of important questions that cannot be addressed using cross-sectional
or time-series data sets.

Example 31 (Hsiao 2003). Suppose that a cross-sectional sample of married
women is found to have an average yearly labor-force participation rate of 50
percent. At one extreme this might be interpreted as implying that each woman
in a homogenous population has a 50 percent change of being in the labor force
in any given year, while at the other extreme it might imply that 50 percent
of the women in a heterogenous population always work and 50 percent never
work. In the first case, each women would be expected to spend half of her
married life in the labor force and half out of the labor force, and job turnover
would be expected to be frequent, with an average job duration of two years.
In the second case, there is no turnover, and current information about work
status is a perfect predictor of future work status. To discriminate between
these two models, we need to utilize individual labor-force histories to estimate
the probability of participation in different subintervals of the life cycle. This is
possible only if we have sequential observations for a number of individuals.

3.8.1 Issues involved in the use of panel data
Heterogeneity bias

The power of panel data derives from their theoretical ability to isolate the ef-
fects of specific actions, treatments, policies, etc.. This is based on the assump-
tion that the data under analysis are generated from controlled experiments
in which the outcomes are random variables with probability distribution that
is a smooth function of the various variables describing the conditions of the
experiment. If the available data is generated from simple controlled exper-
iments, standard statistical methods can be applied.

However, if the observations are not from controlled experiments, different
statistical units, or individuals, may be subject to the influences of different
factors. If important factors peculiar to given individual are left out, the as-
sumption that the variable y is generated by a parametric probability distribu-
tion function P (y|θ), where θ is an m-dimensional real vector, identical to all
individuals at all times, may be unrealistic. Ignoring the individual, or time-
specific effects that are not captured by the included explanatory variables can
lead to heterogeneity of parameters in the model specification. Ignoring this
heterogeneity could lead to meaningless parameter estimates. For example, lets
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consider a simple linear regression model:

yit = αi + βixit + εit, εit ∼ N(0, σ2), (3.27)
i = 1, ..., N,

t = 1, ..., T.

The parameters αi and βi may stay constant over time, but may be different for
different cross-sectional units. If we estimate a normal linear regression using
all NT observations, we have a model

yit = α+ βxit + εit, εit ∼ N(0, σ2). (3.28)

Now, consider two realizations of observations:

1. Heterogenous intercepts (αi 6= αj), homogenous slopes (βi = βj). Figures
1.1, 1.2, and 1.3 demonstrate the variety of circumstances that may arise.
Solid lines serve the same purpose for the least squares regression of model
(3). Obviously, pooled regression should not be used. The direction of the
bias cannot be identified a priori either.

2. Heterogenous intercepts and slopes (αi 6= αj , βi 6= βj). In figures 1.4 and
1.5 circled numbers signify the individuals whose regression have been
included in the analysis. Point scatters are not shown. In the exam-
ple presented in figure 1.4, pooling would lead to nonsensical parameter
estimate, because it would just tell the average of coefficients that are
greatly different in different units. In the figure 1.5 pooling would results
to curvilinear relationship, which results to false inference.

There will be similar biases, if the intercepts and slopes vary through time, even
if they would be identical for all individuals during some time period.

panel.pdf

Figure 3.8: Biases in panel data (Hsiao 2003, p. 10)
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Selectivity bias

Another frequent bias in cross-section and panel data models is that the sample
may not be drawn randomly from the parent population.

Example 32 (Hsiao 2003). New Jersey negative income tax experiment
excluded all families in the geographic areas of the experiment who had incomes
above 1.5 times the officially defined poverty level. Lets assume that in the
population the relationship between earnings (y) and exogenous variables (x),
including education, intelligence, etc., is

yi = β′xi + εi, εi ∼ N(0, σ2).

If the participants of an experiment are restricted to have earnings less than L,
the selection criterion for families considered for inclusion in the experiment can
be stated as

yi = β′xi + εi ≤ L, included,
yi = β′xi + εi > L, excluded.

For simplicity we assume that the values of exogenous variables, except for edu-
cation, are the same for each observation. In figure 1.6 upward-sloping solid line
indicates the average relation between education and earnings in our population,
and the dots represent the distribution of earnings around this mean for selected
values of education. All individuals whose earnings would be above given level
L (horizontal line) would be eliminated from the experiment. When estimating
the effect of education on earnings, we would observe only the points below the
line (circled). This would lead to underestimation of the effect of education
on earnings. More importantly, explanatory variable would now be measured
with considerable error (xi + ε∗), which would lead to under-identification of
parameters (see section 3.6.1 on regression).

3.8.2 Simple regression with variable intercepts
In panel data models, the conditional expectation of y give x is examined using
the linear regression

yit = αi + βX ′it + εit, εit ∼ N(0, σ2), εit ⊥⊥ Xit. (3.29)

where β is a K × 1 vector of coefficient (excluding intercept). For estimation
the properties of the intercept must be specified. There are three possibilities:

1. Constant: If αi = α∀i we can use ordinary least squares to estimate
equation (4).

2. Random effects: If αi is a stochastic (random) variable that is independent
of xi, OLS is not efficient. We note the "random individual effect" as ui.

3. Fixed effects: If αi is a "group mean" and if E(αixi) 6= 0, OLS will
produce biased parameter estimates.

In principle, the most important question when dealing with panel models, is
the assumptions made on the intercept. As presented above, the intercept, or
individual effect, can basically have three different forms. If we have rejected the
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overall homogeneity hypothesis, but the specification of a model seems proper, a
simple way to take account the heterogeneity across individuals and/or through
time is to use variable-intercept models. These models assume that, conditional
on the observed explanatory variables, the effects of all excluded (omitted) vari-
ables are driven by individual time-invariant and individual time-varying vari-
ables (in some cases there is also a need to take the period individual-invariant
effects into account, but as they make the estimation of models clearly more
complicated we discard these effects).

The individual time-invariant variables are the same for given statistical unit
through time, but vary across statistical units (e.g. gender, ability, and socio-
economic background variables). The individual time-varying variables vary
across cross-sectional units at given point in time and also through time (the
"common" residual). In general, two different estimators are used: fixed-effects
or random effects estimators.

In the case of fixed effects estimator we have a model

yit = αi + β′Xit + εit, εit ∼ N(0, σ2), εit ⊥⊥ Xit

i = 1, ..., N, t = 1, ..., T.

β′ is a 1×K vector of constants and αi is a 1×1 scalar constant representing the
effects of those variables specific to the ith individual in more or less the same
fashion over time. OLS estimator of fixed effects is called the least-squares
dummy variables estimator. LSDV estimator removes the individual effects
effects, usually by assuming

∑N
i=1 αi = 0. This way the individual effects αi

represent the deviation of the ith individual from the common mean, and they
are "eliminated" from the estimation.

Random effects estimator is

yit = α+ βX ′it + ui + εit, ui ∼ N(0, σ2
u), εit ∼ N(0, σ2

ε ), (3.30)

where following assumptions must also hold:

Eui = Eεit ≡ 0 (3.31)

Euiuj =

{
σ2
u ifi = j

0 ifi 6= j,
(3.32)

Eεitεjt =

{
σ2
ε ifi = j, t = s

0 otherwise, (3.33)

and

ui ⊥⊥ Xit, (3.34)
εit ⊥⊥ Xit, (3.35)
εit ⊥⊥ ui. (3.36)

In the case of random effects, OLS is no longer BLUE estimator, i.e. best linear
unbiased estimator. Estimation in the case of random effects must be conducted
with generalized least squares estimator, or GLS.
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3.8.3 Notes
Random or fixed-effects?

The obvious problem in the random effects estimator is that it is biased if the
assumption ui ⊥⊥ Xit is broken (which is not the case in fixed-effects estimator
because the individual effects, αis, are "eliminated" before estimation). This is
problematic because the individual effects are not known and their estimation
is generally impossible. The assumption about the independence of individual
effects and explanatory variables can be tested with the help of Hausman’s spec-
ification test. There you compare the parameter estimates and error variances
between random effects and fixed-effects estimations.

The problem of choosing between random and fixed-effects is somewhat prob-
lematic concerning the modern statistical inference theory. Cheng Hsiao (2003,
p.43), has concluded the issue the following way:

The situation to which a model applies and the inferences based on
it are the deciding factors in determining whether we should treat
effects as random or fixed. When inferences are going to be confined
to the effects in the model, the effects are more appropriately con-
sidered fixed. When inferences will be made about a population of
effects from which those in the data are considered to be a random
sample, then the effects should be considered random.

However, this is only one view. Some think that there is no real difference be-
tween the inferences in these two estimators as long as the sample is randomly
drawn (Mundlak 1978). What makes the situation more complicated is the
fact that the fixed-effects and random effects estimators do not always produce
similar results even when the assumption ui ⊥⊥ Xit holds. In general, if the in-
ference is not clearly restricted to the sample, one should compare the estimates
of fixed- and random coefficient models, for example with Hausman’s test, and
use random effects estimator if it seems appropriate according to theory and
tests.

Stationarity

It is usually assumed that panel data consists on many statistical units, but only
on few observation through time. So, generally N is assumed to be large and T
small. If time series are stationary and estimator is consistent and efficient in
the case where T is fixed, it is also consistent and efficient when both N and T
are large.
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Chapter 4

Sampling

The idea of sampling is to study a part in order to gain information about
the whole. Data are often produced by sampling a population of people or
things. For example opinion polls report the views of the entire country based
on interviews with a sample of about 1000 people. Goverment reports on em-
ployment and unemployment are produced from a monthly sample of about
60,000 household. The quality of manufactured items is monitored by inspect-
ing small samples each hour of ech shift.

In all of these examples, the expense of examining every item in the popula-
tion makes the sampling a practical necessity. Timeliness is another reason for
preferring a sample to a census, which is an attempt to contact every individual
in the entire population.

An observational study observes individuals and measures variables of in-
terest but does not attempt to influence the responses. An experiment deliber-
ately imposes some treatment on individuals in order to observe their responses.

Statistical inference produces answers to specific questions, along with a
statement of how confident we can be that the answer is correct. The conclu-
sions of statistical inference are usually intended to apply beyond the individuals
actually studied. Successful statistical inference usually requires production
of data intended to answer the specific questions posed.

[Yrjön esimerkki taululle tai ehkei vielä tähän]

4.1 Design of experiments
The individuals on which the experiment is done are the experimental units.
When the units are human beings, the are called subjects. A specific experi-
mental condition applied to the units is called a treatment.

Because the purpose of an experiment is to reveal the response of one variable
to changes in other variables, the distinction between explanatory and response
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variable is important. The explanatory variables are often called factors. Many
experiments study the joint effects of several factors. In such a experiment, each
treatment is formed by combining a specific value (often called a level of each
of the factors.

Example 33. What are the effects of repeated exposure to an advertising
message? The answer may depend both on the length of the ad and on how often
it is repeated. An experiment investigated this question using undergraduate
students as subjects. Some subjects saw a 30-second commercial; others, a 90-
second version. The same commercial was shown either 1, 3, or 5 time during
the program.

This experiment has two factors: length of the commercial, with 2 levels,
and repetition, with 3 levels. The combinations of one level of each factor form
6 treatments. Figure 3.2 shows the layout of the treatments. After viewing, all
of the subjects answered questions about their recall of the ad, their attitude
toward the camera, and their intention to purchase it. These are the response
variables.

32.pdf

Laboratory experiments in science and engineering often have a simple
design with only a single treatment, which is applied to all of the experimental
units. The design of such an experiment can be outlined as

Treatment −→ Observed response.

Example 34. "Gastric freezing" is a clever treatment for ulcers in the upper
intestine. The patient swallows a deflated balloon with tubes attached, then a
refrigerated liquid is pumped through the balloon for an hour. The idea is that
cooling the stomach will reduce its production of acid and so relieve ulcers. An
experiment reported in the Journal of American Medical Association showed
that gastric freezing did reduce acid production and relieve ulcer pain. The
treatment was safe and easy and was sidely used for several years. The design
of the experiment was

Gastric freezing −→ observe pain relief

However, the gastric freezing experiment was poorly designed. The patients’
response may have been due to the placebo effect. This may be due to trust
in the doctor and expectations of a cure or simply to the fact that medical con-
ditions often improve without treatment. The response to a dummy treatment
is the placebo effect.

Later, a test where patients were divided in to two groups, one receiving a
placebo and other the gastric freezing treatment. 34% of the 82 patients in the
treatment group improved, but so did 38% of the 78 patients in the placebo
group.
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A lurking variable is a variable that is not among the explanatory or
response variables, but may still influence the interpretation of relationships
among those variables. A placebo effect’ is a lurking variable. In general, the
desing of a study is biased if it systematically favors certain outcomes.

4.1.1 Randomization
The design of an experiment first describes the response variable of variables,
the factors (explanatory variables), and the layout of the treatments, with com-
parison as the leading principle. Figure 3.2 illustrates this aspect of the design
of a study of response to advertising. The second aspect of design is the rule
used to assign the experimental units to the treatments. Comparison of the
effect of several is valid only when all treatments are applied to similar groups
of experimental units. If one corn variety is planted on more fertile groud, or
if one cancer drug is goven to more seriously ill patients, comparisons among
treatments are meaningles. Systematic differences among the groups of experi-
mental units in a comparative experiment cause bias.

Experimenters often attempt to match groups by elaborate balancing acts.
Medical researchers, for example, try to match the patients in a "new drug"
experimental group and a "standard drug" control group by age sex, physical
condition, smoker or not, and so on. Matching is often helpful but not adequate,
because there are too many lurking variables that might affect the outcome.

The statistician’s remedy is to rely on chance to make an assignment
that does not depend on any characteristics of the experimental units
and that does not rely on the judgment of the experimenter in any
way.

The use of chance to divide experimental units into groups is called random-
ization.

Example 35. Does talking on a hands-free cell phone distract drivers?
Undergraduate students "drove" in a high-fidelity drving simulator equipped
with a hands-free cell phone. The car ahead brakes: how quickly does the
subject respond? Twenty students (the control group) simply drove. Another
20 (the experimental group) talked on the cell phone while driving.

This experiment has a single factor (cell phone use) with two levels. The
researchers must divide the 40 student subjects into two groups of 20. To do
this in a completely unbiased fashion, put the names of the 40 students in a hat,
mix them up, and draw 20. These students form the experimental group and
the remaining 20 make up the control group. Figure 3.3 presents the desing of
the experiment.

The logic behind the design presented in figure 3.3 is

• Randomization produces two groups of subjects that we expect to be
similar in all respects before the treatments are applied.
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• Comparative design helps ensure that influences other than the cell phone
operate equally on both groups.

• Thus, differences in average brake reaction time must be due either to
talking on the cell phone or the play of chance in the random assignment
of subjects to the two groups.

Principles of experimental design

1. Control the effects of lurking variables on the response, most simply by
comparing two or more treatments.

2. Randomize, i.e. use impersonal chance to assign experimental units to
treatments.

3. Repeat each treatment on many units to reduce chance variation in the
results.

The aim in statistical analysis is to find a difference in the response that is so
large that it is unlikely to happen just because of chance variation. We use
the laws of probability to learn if the treatmen effects are larger than we would
expect to see if only chance were operating. An observed effect so large that it
would rarely occur buy chance is called statistically significant.

4.1.2 How to randomize
The idea of randomization is to assign subjects to treatments by drawing names
from a hat. If one cannot use computer programs on randomization, it can be
done with the help of table of random digits.

A table of random digits is a list of the digits 0,1,2,3,4,5,6,7,8,9 that has
the properties

1. The digit in any position in the list has the same chance of being any one
of 0,1,2,3,4,5,6,7,8,9.

2. The digits in different positions are independent in the sense that the value
of one has no influence on the value of any other.

When all experimental units are allocated at random among all treatments, the
experimental desing is completely randomized. Completely randomized de-
signs can compare any number of treatments. The treatments can be formed
by levels of a singly factor or by more than one factor.

Example 36. In the cell phone experiment, we must divide 40 students at
random into two groups of 20 students each.

Step 1: Label. Give each student a numerical label, using as few digits as
possible. Two digits are needed to label 40 students, so we must use labels

33.pdf
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01, 02, 03, .... , 39, 40

It is also correct to use labels 00 and 39 or some other choice of 40 two-digit
labels.

Step 2: Table. Start anywhere in the table of random digits and read two-digit
groups. Suppose we begin at some line, which is

69051 64817 87174 09517 84534 06489 87201 97245

The first 10 two-digit groups in this line are

69 05 16 48 17 87 17 40 95 17

Each of these two-digit groups is a label. The labels 00 and 41 to 99 are not
used in this example, so we ignore them. The first 20 labels between 01 and 40
that we encounter in the table choose students for the experimental group. Of
the first 10 labels in our line, we ignore four because they are too high (over
40). The others are 05, 16, 17, 17, 40, and 17. The students labelled 05, 16,
and 40 go into the experimental group. Ignore the second and third 17s because
student is alreayd in the group. Run your finger across our line (and continue
to the following lines) until you have chose 20 students. These students form
the experimental group. The remaining 20 are the control group.

4.1.3 Some cautions about experimentation
The logic of randomized comparative experiment depends on our ability to treat
all the experimental units identically in every way except for the actual treat-
ments being compared. Good experiment thus requires careful attention to
details. For example, the subjects in the second gastric freezing experiment
all got the same medical attention during the study. Moreover, the study was
double-blind, i.e. neither the subject themselves nor the medical personnel
who worked with them knew which treatment any subject had received.

In general, many experiments have some weaknesses in detail. The environ-
ment of an experiment can influence the outcomes in unexpected ways. Probably
the most serious weakness of experiments is lack of realism. The subjects or
treatments or setting of an experiment may not realistically duplicate the con-
ditions we really want to study.

Example 37. How do layoffs at a workplace affect the workers who remain
on the job? Psychologists asked student subjects to proofread text for extra
course credit, then "let go" some of the workers (who were actually accomplices
of the experimenters). Some subjects were told that those let go had performed
poorly (treatment 1). Others were told that no all could be kept and that it
was just luck that they were kept and others let go(treatment 2). We can’t be
sure that the reactions of the students are the same as those of workers who
survive layoff in which other workers lose their jobs. Many behavioral science
experiments use student subjects in a campus setting. Do the conclusion apply
to the real world?
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Most experimenters want to generalize their conclusions to some setting
wider than of the actual experiment. Statistical analysis of an experiment can-
not tell us how far the results will generalize to other settings.

4.2 Sampling design
The entire group of individuals that we want information about is called the
population. A sample is a part of the population that we can actually exam-
ine in order to gather information.

Population is defined in terms of our desire for knowledge. The design of a
sample survey refers to method used to choose the sample from the population.
Poor sample designs can produce misleading conclusions.

Example 38. The american Family Association (AFA) is a conservative
group that claims to stand for "traditional family values". It regularly posts
online poll questions on its Web site - just click on a response to take part.
Because the respondents are people who visit this site, the poll results always
support AFA’s positions. Well, almost always. In 2004, AFA’s online poll
asked about the heated issue of allowing same-sex marriage. Soon, email lists
and social- network sites favored mostly by young liberals pointed to the AFA
poll. Almost 850,000 people responded, and 60% of them favored legalization
os same-sex marriage. AFA claimed that homosexual rights groups had skewed
its poll.

Online polls are now everywhere - some sites will even provide help in con-
ducting your own online polls. As the AFA poll illustrates, you can’t trust the
results. People who take the trouble to respond to an open invitation are not
representative of the entire adult population. That’s true of regular visitors to
AFA’s site„ of the activists who made a special effort to vote in the marriage
poll, and of the people who bother to resopnd to write-in, call-in, or online polls
in general.

In example 38 the sample was selected in a manner that quaranteed that it
would not be representative of the entire population. These sampling schemes
display bias, or systematic error, in favoring some parts of the population over
others. Usually, voluntary response samples are biased because people with
strong opinions, especially negative opinions, are most likely to respond.

4.2.1 Stratified samples
A simple random sample (SRS) of size n consists of n individuals from
the population chosen in such a way that every set of n individuals has an
equal chance to be in the sample actually selected. Each treatment group in a
completely randomized experimental design is an SRS drawn from the available
experimental units. An SRS is selected by labeling all the individuals in the
population and using software or a table of random digits to select a sample of
the desired size.
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SRS is an example of a probability sample. A probability sample is a
sample chose by chance. We must know what samples are possible and what
chance, or probability, each possible sample has. As SRS gives a equal chance
to each member in the population to be selected, it is sometimes reasonable to
sample important groups within the population separately and then combine
sample. To select this kind of stratified sample, first divide the population
into groups of similar individuals, called strata. The choose a separate SRS in
each stratum and cobine these SRS’s to form the full sample.

Example 39. A dentist is suspected of defrauding insurance companies by
describing some dental procedures incorrectly on claim forms and overcharging
for them. An investigation begins by examining a sample of his bills for the
past three years. Because there are five suspicious procedures, the investigators
take a stratified sample. That is, they randomly select bills for each of the five
procedures separately.

4.2.2 Multistage samples
Another common means of restricting random selection is to choose the sample
in stages. This is common practice for national samples of households or peo-
ple. For example, data on employment and unemployment are gathered by the
government’s Current Population Survey, which conducts interviews in about
60,000 households each month. Clearly, sending interviewers to the widely scat-
tered households in an SRS would be too costly, and the government wants
data broken down by states and large cities. Therefore multistage sampling
design is used. The sampling design is roughly as follows:

Stage 1 Divide the United States into 2007 geographical areas called Primary
Sampling Units, or PSUs. PSUs do not cross stage lines. Select a sample of
754 PSUs. This sample includes the 428 PSUs with the largest population
and a stratified sample of 326 of the others

Stage 2 Dividive each PSU selected into smaller areas called "blocks". Stratify
the blocks using ethnic and other information and take a stratified sample
of the blocks in each PSU.

Stage 3 Sort the housing units in each block into clusters of four nearby units.
Interview the households in a probability sample of these clusters.

Cautions about sample surveys

Random selection eliminates bias in the choise of a sample from a list of the
population. Sample surveys of large human populations require much more
than a good smapling desing. Undercoverage occurs when some groups in the
population are left out of the process of choosing the sample. Nonresponse
occurs when an individual chose for the sample cannot be contacted or does
not cooperate. The behavior of the respondent or of the interviewer can also
cause response bias in sample results. The wording of questions is the most
important influence on the answers given to a sample survey.

Example 40. In response to the question "Are you heterosexual, homosex-
ual, or bisexual?" in a social science research survey, one women answered, "It’s
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just me and my husband, so bisexual". This is a classic example of trusting too
much on people’s knowledge on different terms.

How do American’s feel about goverment help for the poor? Only 13%
think we are spending to much on "assistance to the poor", but 44% think
we are too much on "welfare". How do the Scots feel about the movement to
become independent from England? Wekk, 51% would vote for "independece for
Scotland", but only 34% support "an independent" Scotland separate from the
United Kingdom". It seems that "assistance to the poor" and in"independence"
are nice, hopeful words. "Welfare" and "separate" are negative words.

4.3 On statistical inference
The basic fact in sampling is that the value of a statistic varies in repeated ran-
dom sampling. This is called sampling variability. Random samples eliminate
bias from the act of choosing a sample, but they can still be wrong because the
variability that results when we choose at random. If the variation when we
take repeat samples from the same population is too great, we can’t trust the
results of any one sample.

The problem is eased by the fact that if we take lots of random samples of
the same size from the same population, the variation from sample to sample
will follow a predictable pattern. Basicly, all of statistical inference is based on
one idea. That is, to see how trustworthy a procedure is if we repeat it
many times.

As mentioned above, sampling variability is not fatal. If we took many
samples, we would end up to some distribution. The procedure is as follows

• Take a large number of samples from the same population.

• Calculate the sample proportion p̂ for each sample.

• Make a histrogram of the values p̂.

• Examine the distribution displayer in the histogram for shape, center,
spread and outliers and other deviations.

In practice, however, it is often too expensive to take many samples from a large
population.

Example 41. Suppose that in fact 60% of the population is U.S. find clothes
shopping time-consuming and frustrating (see example 9). Then the true value
of the parameter we want to estimate is p = 0.6. We can now imitate the
population by a table of random digits, with each entry standing for a person.

Six of the ten digits (say 0 to 5) stand for people who find shopping frustrat-
ing. The remaining four digits (6 to 9) stand for those who do not. Because all
digits in a random number table are equally likely, this assignment produces a
population proportion of frustrated shoppers equal to p = 0.6. We then imitate
an SRS of 100 people from the population by taking 100 consecutive digits from
table of random numbers. The statistic p̂ is the proportion of 0s to 5s in the
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sample. Here are the first 100 entries from table of random digits:

19223 95034 05756 28713 96409 12531 42544 82853
73676 47150 99400 01927 27754 42648 82425 36290
45467 71709 77558 000095

There are 64 digits between 0 and 5, so p̂ = 64/100 = 0.64. A second SRS
based on the second 100 entries in table of random digits would give a result
of p̂ = 0.55 (check from the table presented in appendix). That is sampling
variability.

4.3.1 Sampling distributions
The sampling distribution of a statistic is the distribution of values taken
by the statistic in all possible samples of the same size from the same population.

Example 42. Figure 3.9 illustrates the process of choosing many samples
and finding the sample proportion p̂ for each one. The histogram at the right
of the figure shows the distribution of the values of p from 1000 separate SRSs
of 100 drawn from a population with p = 0.6.

Figure 3.10 is parallel to figure 3.9. It shows the process of choosing 1000
SRS, each size of 2500 from a population in which the true proportion is p = 0.6.
The 1000 values of p̂ from these samples form the histrogram at ther right of
the figure. Both figures are drawn on the same scale. These histograms display
the sampling distribution of the statistic p̂ for two sample sizes.

39.pdf

310.pdf

311.pdf
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We can generalize the distributions in figures 3.9 and 3.10 as follows:

• Shape: The histrograms look normal with the 1000 values for samples of
size 2500 are very close to normal. Figure 3.11 presents a normal quintile
plot of the values of p̂ for our sample of size 100. The normal curves drawn
through the histrograms describe the overall shape quite well.

• Center: In both cases the values of the sample proportion p̂ vary from
sample to sample, but the values are centered at 0.6, which is the true
population parameter. Therefore, we can conclude that p̂ has no bias as
an estimator of p.

• Spread: The values of p̂ from sample of size 2500 are much less spread
out than the values from sample of size 100.

4.3.2 Bias and variability
Bias concerns the center of the sampling distribution. A statistic used to esti-
mate a parameter is unbiased if the mean of its sampling distribution is equal
to the true value of the parameter being estimated.

The variability of a statistic is described by the spread of its sampling
distribution. This spread is determined by the sampling desing and the sample
size n. Statistic from larger probability samples have smaller spreads.

312.pdf
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To reduce bias, we use random sampling. When we start with a list of
the entire population, simple random sampling produces unbiased estimates, i.e.
the values of a statistic computed from an SRS netiher consistently overestimate
nor consistently underestimate the value of the population parameter.

To reduce the variability of a statistic from an SRS, use larger sample.
You can make the variability as small as you want by taking a large enough sam-
ple. Results from a sample survey usually come with amargin of error that set
bounds on the size of the sample statistics. Thus, it is smaller for larger samples.

The size of the population is usually not a critical factor in analysis, if
the sample is really a random sample. Moore and McCabe give this following
"thumb rule":

The variability of a statistic from a random sample does not depend
on the size of the population , as long as the population is at least
100 times larger than the sample.

It should be remembered that many times drawing a random sample reguires
the use of sophisticated probabilistic methods. Therefore all that has been pre-
sented in these lectures on sampling should be treated only as "raw guidelines".

Additional reading:
Cochran, William (1977): Sampling techniques. John Wiley & Sons.
Thomson, Steven (2004): Sampling. John Wiley & Sons.
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